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a third step, the secondary set is considered; in particular the
independence/dependence of the two sets. The correlation of
-location with trace length is considered with the line-kernel function
methods and the nearest neighbor fiber distance method. ’

The hierarchical model has been applied to two cases in which

detailed fracture patterns have been observed, one with a single set

and one with two sets. The validity of the model was checked by

visual comparison between model prediction and mapped patterns I
and most importantly, by statistical tests such as the second-moment

analysis and the Monte Carlo test. A satisfactory fit of the predicted '
pattern was obtained in both cases.

Finally, a tcpological application of the stochastic geometry model is
developed. Using a fully persistent block model, the kinematic as
well as the kinetic stability of a rock slope is investigated. Through
sensitivity studies, the most significant parameters affecting slope
stability are found. '

It is important to note that the combined hierarchical and topological l
model can be applied to any problem involving stability or failure of

fractured bodies or masses; thus not only slope stability but also

tunnel stability can be considered. Although limited at present to

fully persistent fractures, the model concept ic also applicable to

non-persistently fractured masses/bodies and can thus include

concrete structures.
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Chapter 1

INTRODUCTION

Since rock masses are usually discontinua, one needs to consider fracture geometry
when considering rock mass behavior. The MIT rock mechanics group has developed
idealized stochastic models : Baecher, et al. (1977) assumed a disk shaped fracture in a
space. The Baecher model can be constructed by generating a homogeneous Poisson point
pattern for fracture centers and by adopting suitable fracture size distribution functions as
well as fracture orientation distribution functions. Veneziano (1979), in his model, used a
Poisson plane process in space followed by a Poisson line process in each plane. Using a
persistence parameter, polygonal fractures can be constructed in space. Dershowitz (1985)
modified the Veneziano model by considering fracture intersection behavior. With a
Poisson plane process, he generates intersections of various fracture planes in space which
in tum bound polygonal fractures. These simplified stochastic fracture models have been
applied in a number of cases. They are limited, however, since they cannot represent many
fracture patterns encountered in the field. Specifically :

¢ They do not account for spatial nonhomogeneities such as fracture clustering.

¢ The models are only loosely tied to the geologic genesis of the fractures. In
particular, most models assume independence among fracture sets. From a
geologic viewpoint, this assumption is often incorrect since the fracture sets
are, in almost all cases, sequentially generated with inter-relations among
themselves.

¢ Only in a few cases have the models been validated using actual fracturs data.

In this research project, advanced stochastic geometry models are created which better

represent reality.

Stochastic geometry can handle both the geometric and the stochastic nature of a
structure (i.e., rock mass). In general, stochastic geometry can be considered in different

ways :
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1. Based on a geometry (shape), which can be a point or line process in a plane,
or a three-dimensional Random Closed Sets ( RACS ) process.

2. Based on data sets for the different characteristics; for each characteristic, the
data set can be univariate or multivariate processes.

Application of point processes can be found in the field of forestry. Trees in a forest
can be represented as points in a region. From this simplified process, we can find the
inter-relations among trees. Examples of line processes come from material science. A
defect in the metal surface can be regarded as a line ( or a fiber with finite length ). In the
field of microscopy, one often uses a RACS model where the closed sets consist of spheres
or disks in a space. If the characteristics of the model are not uniform, one employs
bivariate or multivariate point, fiber or RACS processes. For example, if two kinds of trees

exist in a region, the bivariate point process becomes a plausible model.

Within the framework of rock fracture modeling, a point process can be used if the
distribution of fracture traces on a rock surface is simple. Each trace is actually a segment
(fiber) of finite length, but if the trace length, trace orientation and trace position are
independently distributed, we can describe the segment as a point, usually the mid point. If
the above mentioned trace characteristics are correlated with each other, we use the fiber
process for modeling fractures in a plane. A RACS process seems to be best suited for the
three dimensional situations we are actually interested in. However, these models rely on
information which is not readily available such as size and shape of fractures. Eventually,

RACS process models will have to be developed.

We, at this stage, want to concentrate on the point and fiber processes. Specifically,
we will develop alternative models to the conventional homogeneous Poisson point and
Poisson fiber processes. The main features of these models are the hierarchical description
of fracture sets which allows one to reproduce the sequential genesis of fracture sets, and

the consideration of dependencies among fractures of the same set or of different sets. The
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sequential generation and correlation of fracture sets correspond to what happens in nature.
Equally important as the modelling principle is the availability of statistical procedures to
estimate parameters and validate the model. These will provide the basis for future work on

the RACS processes.

To apply the hierarchical fracture geometry model, a two dimensional rock slope will
be considered. The fracture pattemns simulated with the hierarchical model can be used in
any rock mass problem such as flow through fractured rock masses, deformability of
fractured rock masses and stability of fractured rock masses. The last of these problems is
chosen here because it has great practical significance both regarding rock slope stability
and stability of any fractured mass (rock mass around tunnel, concrete structures with
cracks. etc). For such applications, existing models are not suitable. Consequently, new
models need to be developed which, in our case, will consist of a combination of the

hierarchical fracture model and a topological model.

In Chapter 2, we will discuss the basic characteristics of the point process and of
some alternative models which may be used in rock fracture modeling. In particular, we
will consider the Complete Spatial Randomness ( CSR ) as an indicator of the
homogeneous, isotropic point process. In Chapter 3, the appropriate point process models
which can be best fit to our mapped data are specified and developed. Additional
mathematical expressions are introduced which make the unknown functions ( in our case,
the trace intensity function ) easy to formulate. In Chapter 4, we will introduce the basic
characteristics of the fiber process. Also traditional fiber process models will be reviewed
and criticized. In Chapter 5, we will expand our point process model to a fiber process
model. Topological application of the stochastic fracture geometry model is considered in
Chapter 6. Finally, in Chapter 7, conclusions will be drawn as to advantages and

limitations of the fracture geometry models.
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Chapter 2

BASIC CHARACTERISTICS OF POINT PROCESSES

Point processes can be regarded as statistical models for point-like objects in a plane.
Traditionally trees in a forestry or earthquake occurences in the space-time domain have
been represented by point pattems. The reason for using a point processes is to analyze
patterns of points and to suggest a plausible mechanism by which they might have been
generated. In our case, the traces on a rock outcrop are considered as segments, and can be
represented as points, usually mid points, in a plane. ( This is a first approximation ; more
complex processes will be introduced later ). Fig. 2-1 is an example of a simple trace
pattern and we will consider such trace data with point processes. Usually, one will assume
a Poisson point process as a null hypothesis when generating center points of rock fractures

in a plane or space.

In this Chapter, we, first of all, check the above mentioned null hypothesis using
mapped data such as the fracture traces of Fig. 2-1. There are many tests which can be used
to check randomness assumptions. Two relatively powerful tests are described here, and a
brief history of various test methods is given in Appendix A. Next, the second moment
properties of the point processes are considered since, in most cases, point patterns can be
characterized by second moments. Finally, we will discuss various point process models,
including the homogeneous Poisson point process model, which may be applied to rock

fracture modelling.
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Figure 2-1: Map of Florence Lake Outcrop ( After Segall & Pollard, 1983 :
Only Traces within Rectangular
Region are Considered )
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2.1 Test of Complete Spatial Randomness ( CSR )

The simplest assumption of point pattern characteristics is no interaction between the
points. This is called Complete Spatial Randomness (CSR) ( Diggle, 1983 ). If the intensity
of points changes from place to place, the pattern is not homogeneous and we call it
inhomogeneous or heterogeneous. Directional patterns are called anisotropic.

The hypothesis of CSR for a point pattem asserts that,

1. The number of events in any planar region A with area |A| follows a Poisson
distribution with mean A|A |, where A is the intensity.

2. Given n events X, in a region A, the x; are an independent random sample
from the uniform distribution on A.

There are two reasons for considering CSR.
1. CSR is a minimal prerequisite for randomness.

2. CSR operates as a dividing bypothesis between regular and aggregate
patterns.

Therefore, if the given set of points does not follow CSR ( because there is an
attractive or inhibitive correlation among points ), our aim will be to find non-Poisson

models and to establish a method for testing the fit of any proposed model.

To test CSR of a given data set, we use two different methods. One is based on
distance measures, the other uses a quadrat count. Only the distance measure method will
be discussed here, specifically, inter-event distances and nearest neighbor distances. This
will be done because, in some cases, the quadrat count method cannot provide much
information, for example, on clustering or inhibitory behavior, and it is not easy to
visualize. Furthermore, if the number of data points is small, the quadrat count method may
not be useful. The specific distance measure methods described here are the inter-event

distances and nearest neighbor distances.
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2.1.1 Inter-event Distances

The theoretical distribution of the distance r, H(t), between two events independently
and uniformly distributed in a region A depends on the size and shape of A, but can be
expressed in closed form for the most common cases of a square or circular area A
(Bartlett, 1964). Assuming that for the particular region A in question, H(t) is known, we
can calculate the empirical distribution function ( EDF ) of inter-event distances. This
function, i{,(t) say, represents the observed proportion of inter-event distances 4 which are

at most t. Thus,

AHl(r)={;n(n—l)}“' no.(t,-jSt) 2.1)

where no. means "the number of”" and il,(t) is the empirical distribution function. A plot of
i-l,(t) on the ordinate against H(t) on the abscissa should be roughly linear if the data are
compatible with CSR. To assess the significance and the deviations from linearity, the
conventional approach would be to find the sampling distribution of i-I,(t) under CSR. Since
this is complicated by the dependence between inter-event distances with a common end-

point, one, therefore, proceeds as follows :

1. Calculate EDF i—l,.(t), i=23,..,;, from each of s-1 independent simulations of
n events independently and uniformly distributed on A

2. Define upper and lower simulation envelopes,
U(t)=max (}'Ii(t)),
L(t)=min (ill.(t)), i=23,---,s. 2.2)

these simulation envelopes can also be plotted against H(t), and have the
property that under CSR, and for each t,

P(H(0)>U®)=P (H® <Lt )=5" 2.3)

since we assume that each simulation is distributed independently and
unifonnly on A. The simuleition envelopes are intended to help in the
interpretation of the plot of H(t) against H(t). That is, if the theoretical
pattern lies between U(t) and L(t) throughout its range, it means acceptance of
CSR.

3. If the region A is one for which the theoretical distribution function H(t) is
unknown as in our case ( rectangular region ), a test can still be carried out if
H(t) is replaced by
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Hn=(s=1)"' Y H(o) (2.4)

j=i

Similarly, the graphical procedure then consists of plotting ill(t), U(t) and
L(t) against ﬁ,(t) or, to make it easy to visualize, plotting ’I\{,(t), U(t), L(t) and

P_Il(t) against distances. Note that because ﬁ,(t) is a simulated value under the
assumption of CSR and does not include the original data, it provides an
unbiased estimate of H(t). Checking CSR with simulation envelopes can also

be applied here, ie., if ﬁ,(t) lies between maximum (U(t)) and minimum
(L(t)) envelopes throughout its range, it means acceptance of CSR.

Fig. 2-2 shows an inter-event distance test of our mapped pattern from Fig. 2-1,
where the averaged value is given in Eqn (2.4), and for clarity, U(t) and L(t) are replaced by
maximum and minimum value, respectively. From this figure, we do not accept the CSR
assumption for the data of Fig. 2-1. This means, our mapped pattern is not random and
there seems to be a certain interaction among mid points. However, with this test, it is not
easy to see the degree of interaction. In other words, we see the clustered behavior of the

traces from Fig. 2-1, but we cannot use this test to quantitatively describe the clustering

behavior.

Also from a simple Monte Carlo test (Barnard, 1963), we can decide on the
acceptance of CSR for given data. When we use the Monte-Carlo test, it provides a useful
check on the applicability of the asymptotic theory. Let u, be the observed value of a
statistic U and let u, i=2, - - - ;s be corresponding values generated by independent random
sampling from the distribution of U under a simple hypothesis H. Let u;, denote the j-th

largest amongst u,, i=1, - - - ,5. Then, under H,
Plu,=um]=s", j=1,---s (2.5)
and rejection of H on the basis that u, ranks k-th largest or higher gives an exact, one-sided

test of size ';‘ For example, if u, is the highest among 20 sampling values, one rejects the

hypothesis of the 5% significance level. This assumes that the values of the v, are all
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Figure 2-2: CSR test with Inter-event Distance
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different, so that the ranking of u, is unambiguous. In our case, define u, to be a measure of

the discrepancy between li{‘.(t) and H(t) over the whole range of t,

u.= j (H(—H(t) }2dr (2.6)
and proceed with the above mentioned Monte Carlo test based on the rank of u,.

In our case, we tried 49 simulations ( i.e., s = 50 ) and, from the one-sided test at the

2% significance level, we reject CSR for our mapped pattemn.

2.1.2 Nearest Neighbor Distances

For n events in a region A, let y, denote the distance from the i-th event to the nearest
other event in A. The y, are called nearest neighbor distances. We can calculate the EDF,
AG,(y) say, of the nearest neighbor distances, i.e.,

AG,:n—l no.(y;<y) 2.7
In many practical situations, interactions between events exist, if at all, only on a small
physical scale : for example, trees would be expected to compete for sunlight or nutrient
within an area roughly confined to their crowns or root systems, respectively. In such a
case, nearest neighbor distances provide an objective means of concentrating on small inter-
event distances when a precise threshold distance cannot be specified in advance. The
theoretical distribution of nearest neighbor distance Y under CSR depends on the number of
events n and on A, and is not expressible in closed form because of complicated edge
effects. An approximation which ignores these edge effects is obtained by noting that if |A|
denotes the area of A, then my?|A[™! is the probability under CSR that an arbitrary event is
within distance y of a specified event. Since the events are located independently, the

approximate distribution function of Y is
GW=1-(1-ny|A[')™! (2.8)

The EDF of nearest neighbor distances, AG,(y), can be compared with upper and lower

simulation envelopes from simulated EDFs bi(y) ¢ 1=2,3,---,5 in a similar way to the
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inter-event method. The approximate result, Eqn (2.8), can be used to suggest a suitable

range of tabulation but, because it is approximaie, it is generally preferable to use the

sample mean Gl(y) of simulated EDFs.

GW=(s-1'Y G (2.9)

jei
Here again, 6,(y) involves only the simulation of CSR and it provides an unbiased estimate

of G(t).

Now we can construct extreme envelopes like those in Fig. 2-3 in a similar way as we
did in Fig. 2-2. We can plot AG,(t), U(t) (max.), L(t) (min.) and Gl(t) against distance t
where U(t) and L(t) can be derived as follows,
U(r)=max (AGl.(t)),

Ly=min (G(n). i=23, - s. (2.10)

Fig. 2-3 shows rejection of CSR. In addition, we clearly see the interaction of data
points. Near the distance 1.0 and 3.0, we see the clustering phenomenon among traces,

whereas near 2.5, there seems to be inhibitory interactions.

Again a Monte-Carlo test, which is analogous to Eqn (2.6), shows rejection of CSR at
the 2% significance level. In this case, we replace the H function of Section 2.1.1. by G

function shown above.

2.2 Second Moment Properties of Point Processes

To compare any candidate model with a set of data, we often use first and second
moment properties of a point process. Here, E(x) is the expectation of a random variable x
: N(A) represents the number of events in a region A ; |A| is the area of A ; dx is an
infinitesimal region which contains the point x ; b.(t) represents the disc with center x and
radius t ; R? is the entire plane where R? = b(R)xb(R) = { (x,y) : X,y € R} which is the
co-ordinatization of the plane and generally R? is referred to as the d-dimensional

Euclidean space.
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First-order properties are described by an intensity function,

AMx)= lim (5[_1"(—"‘_)_]) (2.11)

1dx| =0 |dx]

For a stationary process ( i.e., the process in any region A of the plane is invariant under
arbitrary translation of A ), A(x) assumes a constant value A, the mean number of events per

unit area. The second-order intensity function is similarly defined as
(E[N(dx)N(dy)]

A(xy)= lim
- [dx|ldy|

ldx||dy|—0

) forx,y in R? (2.12)

For a stationary process., A,(X.¥) = A,(x-y) ; for a stationary, isotropic ( i.e., invariant under
rotation ) process. A,(x-¥) reduces further to A,(t), where t is the distance between x and v.
In statistical mechanics, the scaled quantity A,(t) / A? is referred to as the radial distribution

function, although it is not a distribution fu.ction in the accepted statistical sense.

An alternative characterization of the second-order properties of a stationary,

isotropic process is provided by the function K(t) (Ripley, 1977), which can be defined as

K(1y=A"VE [number of further events within distance t of
an arbitrary event | (2.13)

Thus. A-K(t) can be interpreted as the expected number of pairs of points less than distance
¢ apart with the first point in a given set of unit area. In order to establish a link between
K(t) and A,(t), we shall assume that our process is orderly, by which we mean that multiple

coincident events cannot occur. The expected number of further events within distance ¢ of

an arbitrary event is,
AKO=[" ['12,0/0) xdxdo
(o] 0
=2m\-! I A, (x) xdx (2.14)
0
or
A=A (2re) 'K (1) (2.15)

where 0 is the angle of the arc in a circle with center x and radius t. The covariance density

y is then
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V() =A(1—A? (2.16)

The above mentioned second moment characteristics play an important role when we
consider the relative positions of two points of the process and uantify the apparent
deviation from Poisson randomnes: to clustering or inhibition between points. For this, we,
again, test CSR of our pattern with the second moment properties. If the mapped patten
follows the homegeneous Poisson point process, and if we use Monte-Carlo simuiations,
edge-corrected cecond moments of given data sets would exist between extreme envelopes.
The extreme envelopes can be plorted by adopting a maxin.um and minimum /f((t) value of
the null hypothesis, and edge-corrections can be performed either by graphical concepts
(Ripley, 1977 or Diggle, 1983) or by toroidal shifts (Lotwick & Silverman, 1982). The idea
of the edge-correction can be understood, if we think of small areas near the boundaries,
i.e., there may exist some additional points which do not lie inside the region, but the
influence that these points have needs to be considered. We will discuss edge-correction

methods in Appendix B.

Fig. 2-4 shows a second moment analysis of data given in Fig. 2-1. It is constructed
by assuming that the data follow a homogeneous Poisson point process ; the simulation
envelopes are the realizations of the homogeneous Poisson point pattern. From the figure,
we see the discrepancies of the second moments between the simulated and the mapped
values. As a result, we conclude that the mapped pattern does not follow the homogeneous
Poisson point pattern, i.e. CSR. This was confirmed previously when we tested CSR with
the inter-event and the nearest neighbor distance method. Also the Monte-Carlo test shows

rejection of the homogeneous Poisson point process.

In some cases. we need to include the relative positions of three and more points ;
Hanisch (1983) considers this case in detail. He shows that the third moment measure is
determined by a function K(t,t,,0) of three variables, where t, t, are distances of two

points ‘rom the origin and 0 is the angle between these two points. Meanwhile, Baddeley &
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Silverman (1984) showed that investigation of the second moment properties alone cannot,

sometimes, detect differences between point patterns with identical K functions.

2.3 Point Process Models

In this section, we discuss various models which can be applied to rock fracture
modeling. We already mentioned the application of the homogeneous Poisson point process
and saw that it is often inadequate to model rock fracture patterns. In order to provide a
systematic treatment, the discussion below will nevertheless start with the definition of the

homogeneous Poisson point process.

2.3.1 Homogeneous Poisson Point Process

This process represents the simplest possible stochastic mechanism for the generation
of a spatial point process. It corresponds exactly to the definition of CSR given in Section

2.1.

1. For a given intensity A > 0 and any finite planar region A, N(A) has a Poisson
distribution with mean A|A].

2. Given N(A) = n, the n events in A form an independent random sample from
the uniform distribution on A.

3. For any two different regions A and B, N(A) and N(B) are independent.
so from Eqn (2.12),

ML(=A% >0 2.17)
and from Eqn (2.14) and Eqn (2.17),
K@®)=ne:, >0 (2.18)

This result is quite clear when we refer to the definition of the second moment function
(see, Eqn (2.13)) since, in the homogeneous case, the expected number of further events
within distance r become Ant?, thus leading to Eqn (2.18). Fig. 2-5 shows an example of

the homogeneous Poisson point pattern.
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Figure 2-5: An Example of the Homogeneous Poisson Point Pattern

2.3.2 Inhomogeneous Poisson Point Process
A class of non-stationary point processes is obtained if the constant intensity A of the

Poisson point process is replaced by a variable intensity function A(x), where,
1. N(A) has a Poisson distribution with mean J'A A(x)dx.
2. Given N(A) = n, the n events in A form an independent random sample from
the distribution on A with probability density function proportional to A(x).
However, difficulties remain when the intensity function, A(x), is hard to obtain. Fig

2-6 shows a realization of the inhomogeneous Poisson point pattern where l(xl,xz) =

exp(-2x,-x,).

2.3.3 Poisson Cluster Process
The Poisson cluster process (Neyman & Scott, 1958) is often called parent-daughter

model. This kind of process provides a satisfactory basis for the modeling of aggregated

planar point patterns.
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Figure 2-6: An Example of the Inhomogeneous Poisson Point Pattemn
1. Parent events form a Poisson process with intensity p.

2. Each parent produces a random number s of offspring, realized independently
and identically for each parent according to a probability distribution { P,, s =
0.1,... }.

3. The positions of the offspring relative to their parents are independently and
identically distributed according to a probability density function (PDF) A(.).

Poisson cluster processes are stationary, with intensity A = pE[s]. They are isotropic
if h(.) is a radially symmetric function such as a bivariate normal distribution function. To

express the second-order properties, it is convenient to define

Iy (2)= [ hOh(x-1)dx (2.19)

the PDF of the vector difference between two offsprings from the same parent. The

expected number of ordered pairs of such offspring is E[S(S-1)], so that
A (x-¥)=A2+pE[S(S—1)] hy(x-y) (2.20)

in which the first term arises from a consideration of two offsprings at x and y from
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different parents, and the second from two offsprings of the same parent. Fig. 2-7 illustrates

an example of a Poisson cluster process with 25 parents and four offsprings per parent.

Figure 2-7: An Example of a Poisson Cluster Process

2.3.4 Cox Process ( Doubly Stochastic Process )

The Cox process may be appropriate if the observed pattemn reflects underlying
environmental variation. The source of the environmental heterogeneity might itself be
stochastic in nature. This suggests investigation of a class of doubly stochastic processes

formed as inhomogeneous Poisson processes with stochastic intensity function. Thus,
1. {A(x);x € R?} is a non-negative-valued stochastic process.

2. Conditional on {A(x)=A(x);x € R?}, the events form an inhomogeneous
Poisson process with intensity function A(x).

The difference between the Cox process and the inhomogeneous Poisson point
process is that the intensity function of the Cox process is a stochastically varying function,

whereas the intensity function of the inhomogeneous Poisson point process is deterministic.

First- and second-order properties are obtained from those of the inhomogeneous
Poisson process by taking expectations with respect to { A(x) }. Thus, in the stationary

case, the intensity is,
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A=E[A(X)] (2.21)
Also, the conditional intensity of a pair of events at x and y given { A(X) } is A(x)A(y), so
that,

A =E[AX)AY)] (2.22)
In the stationary, isotropic case, this can be written as

A(D=A2+y(t) (2.23)
where,

Y()=Cov { A(X),A(¥) } (2.24)

and 1 is the distance between x and y. Note that the covariance function y(t) of the intensity
process is also the covariance density of the point process. From a statistical point of view,
the distinction between clustering and heterogeneity can only be made if additional
information is available and Diggle (1977) suggested a two-phase test for distinction. Fig.
2-8 and Fig. 2-9 show a realization of the Cox process and corresponding covariance

function, respectively (see Matemn, 1971).

Figure 2-8: An Example of the Cox Process
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Figure 2-9: Covariance Density of the Process Used in Fig. 2-8

2.3.5 Simple Inhibition Process [ Hard-core Process ]

The alternatives to the Poisson processes described in Section 2.3.3. and 2.3.4. share
a tendency to produce aggregated patterns. Regular pattens arise most naturally by the
imposition of a minimum permissible distance, d, between any two events. For example, as
Matem (1986) described, assuming a random point representing a cell, specifically the core
of the cell, then each point must be surrounded by a certain region where no other point can
exist. Processes of this sort, which incorporate no further departure from complete spatial
randomness, will be called simple inhibition ( or repulsion ) processes (or hard-core

processes). The packing intensity of a simple inhibition process is defined as :
T=And?/4 (2.25)

where A is the intensity. Thus, 1 is the proportion of the plane covered by non-overlapping

discs of diameter 9, or the expected proportion of coverage for a finite region A.

Matem (1986) described two types of simple inhibition processes,

1. A Poisson process p is thinned by the deletion of all pairs of events a distance
less than & apart. That is, if two events have a mutual distance less than §,
both of them are deleted. The probability that an arbitrary event survives is
therefore exp( -pd? ), and the intensity of the simple inhibition process is,
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A=p exp(-npd) (2.26)

2. In case of a dynamic scheme, the events of a Poisson process are marked with
times of birth and an event is removed if it lies within a distance 0 of an older
event. An expression analogous to Eqn (2.26) can be obtained, but only by
ignoring any consideration of whether or not the older event in question has
itself previously been removed.

Recognition of this last aspect leads to a simple sequential inhibition process, defined
on any finite region A as follows. Consider a sequence of n events X; in A and let d(x,y)

denote the distance between two points x and y. Then,
1. x; is uniformly distributed in A.

2.Given { x;=x;, j=1,-- - ,i=1 }, x : is uniformly distributed on the intersection of

Simple sequential inhibition is parameterized most naturally by its packing intensity,
t=nnd*/4A, where n is the number of events. Note that if too high a value of 1 is
prescribed, the sequential procedure may terminate prematurely. The maximum attainable
packing intensity is a random variable whose distributional properties appear to be largely
intractable. Stoyan & Stoyan (1985) modified Maten’s two models by considering random

hard-core distances. Fig 2-10 shows an example of the simple inhibition process.

2.3.6 Thinned Process

A thinned point process is defined by a primary point process { N (dx) } and a
thinning field {Z(x)}, which is a stochastic process with realized values 0 < Z(x)) < 1 for all
x. Given realization of { N (dx) } and { Z(x) }, the events x; of { N (dx) ) are retained,
independently, with probabilities z(x,), and the corresponding realization of the thinned

point process { N(dx) } consists of the retained events of { N_(dx) }.

The second-order properties of { N(dx) } are obtainable from those of { N (dx) } and
{ Z(x) }. In particular, in the stationary, isotropic case, let p and y(t) denote the mean and

covariance function of { Z(x) }. Then the second-order intensity function of {N(dx)} is
M) =Rg(1) (Y1) +p? (2.27)




-34.-
[} . . * ¢ ¢
. * L4 ¢
. . .
. . . d
¢ . ¢ . . . 4
. . ] . . . .
.
. . R
. o .
. * d
. . .
. .
. . . .
®

Figure 2-10: An Example of the Simple Inhibition Process
where A (t) is the corresponding second-order intensity function of { N (dx) }. The K-

function of { N(dx) } and { N (dx) } are therefore related by
t
K(O=K (+p-? j YK’ () du (2.28)
0
a pattern of the thinned process is shown in Fig. 2-11.

Stoyan (1979) showed the relationship between the thinned process and the Cox

process and derived radial distribution functions for various cases.
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Figure 2-11: An Example of the Thinned Process

2.3.7 Soft-core Process

If there is an interaction between the points, then, it may not be "hard" or abruptly
ending, but "soft" or continuously decreasing. In contrast to the hard-core process ( i.e.,
inhibition process ), the interaction of points is such that the inhibitory forces increase
continuously with decreasing inter-point distance (Stoyan, 1987). Let a stationary Poisson

process of intensity A, be given. Its points get independent marks which are distributed
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according to the continuous distribution function F on [0,e). Then the initial point process

is thinned as follows. A point x with mark r(x) survives if and only if there is no other point

y with mark r(y) such that ;
1. x is in the circle centered at y with radius 1(y)

2. 1(y) 2 r(x).
If F is discontinuous, then the points get an additional independent mark u uniformly
distributed on [0, 1]. If r(x) = 1(y), then condition 2. alone is replaced by u(x) 2 u(y). Of

course, the thinned point process is stationary and isotropic. Its intensity A is given by
A=A, p, (2.29)

where p, is the probability that a point of the basic Poisson process is retained. It satisfies

m:ﬂmﬂ—%V@ﬂﬂ (2.30)

Here V(s) is the volume of the three-dimensional set M(0,s), where for x = ( X Xy)

M(x,s)=((§,n,C);‘/(§—x,)2+(n—x2)2 < FYQ),

sSCSl) (2.31)
F-! denotes the inverse of F. The product-density p(r) = A%g(r) is given by
P()=Ak(r) (2.32)

where i(r) is the probability that both members of a point-pair of distance r of the basic

Poisson Process are retained. It satisfies

k(r)=2j‘j exp(—A, V(r,s,t))deds (2.33)
09T(s)

Here V(r.s,t) is the volume of M(0,s) U M(r,t), where r = ( 1, 1, ) is a point of R? with

distance r to origin 0. T(s) is the set of all real numbers t in [ s,1 ] with ( r,1,t) ¢ MQO,s).

Fig. 2-12 is a pattern of beadlet anemones on a rock in which the positions and sizes
of the anemones are indicated. Stoyan ( 1987 ) used a soft-core process when he analyzed

this pattemn.
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Figure 2-12: An Example of the Soft-core Process, After Upton & Fingleton ( 1985 )

2.3.8 Discussion

We showed that our mapped pattern ( Fig. 2-1 ) does not follow the CSR assumption
using both the inter-event distance test and the nearest neighbor distance test. We checked it
with the second moment measure and it also shows rejection of a CSR. To find a proper
model, we discussed various possible point process models, including a homogeneous

Poisson point process model, which can be applied to rock fracture modelling.

If we think of the large scale, the rock fracture model based on point processes can be
perceived as stationary (Ripley, 1988). In such a case, CSR would probably satisfied.

Hovever, if we confine our interests to a rather small portion of the rock surface, the
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pattern is probably nonstaticnary. It is in situations like this where the one of the
nonhomogeneous models, which were discussed above, will have to be used. We will now

examine if some of these models can represent patterns such as traces in Fig. 2-1.
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Chapter 3

APPLICATION OF POINT PROCESSES TO
ROCK FRACTURE MODELING

3.1 Introduction

Many fracture modeling studies choose a homogeneous Poisson point process as a
basic assumption when generating mid-point patterns. In Chapter 2, we tested the
randomness of the mapped pattern (Fig. 2-1) with three methods and concluded that it did
not follow the homogeneous Poisson poim process. Hence, we need to find an altemative
model which has non-random properties. In our case, the inhomogeneous Poisson point
proce- ;s and doubly stochastic point (Cox) processes seem to be suitable alternatives even

though no clear rule exists as to which of these alternatives should be chosen.

In the following, we will consider the above mentioned two alternative models and

discuss fitting the proposed model to the mapped data.

3.2 Inhomogeneous Poisson Point Model

As discussed in detail in Section 2.3.2, when using the inhomogeneous Poisson
process, we should know an intensity function A(x,y) in advance. If we have an intensity
function A(x,y), we can generate a point pattern with an Acceptance / Rejection ( AR )
scheme as proposed by Lewis & Schedler (1979). This A/R scheme consists of simulating
a Poisson process on a region A with intensity A, equal to the maximum value of A(x)
within A and retaining an event at x with probability A(x)/A,. The A/R scheme plays an

important role when we generate a point pattern, especially a non-homogeneous pattern.

Fig. 3-1 is a mid point representation of our trace map of Fig. 2-1. Considering such a

l
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pattern, it is hard to find the intensity function A(x,y). With regression, we can only find
the y-directional intensity function like A(y) = exp( 0.36y - 0.028y2 - 3.25 ) since significant
clustering as well as inhibitory behavior exists simultaneously in the x-direction. To derive
an x-directional intensity function, we use a kemnel function f. Usually f is a symmetric

probability density function, for example the normal density function, with the conditions,
f(x)=f(-x)
J f(x)dx=1

j " f)xtdx=1 3.1)

The kemel estimator with kernel function fis defined by

A 1~ x=X;
?.(x):Ei;f( - ) (3.2)

where / is the window width and often called the smoothing parameter or bandwidth.

The intuitive properties are as follows. Just as the moving average (see Silverman
(1986) for details) can be considered as the height of the histogram (i.e., frequency)
centered at the observation, the kemel estimator is a sum of bumps, where the window
width /& determines their width. This property of the kemel function, therefore, makes an
intensity variation easy to derive. Fig. 3-2 shows a schematic representation of the kermnel
estimates. Provided the kemnel f is everywhere non-negative and satisfies the condition,
Eqn (3.1), it will follow at once from the definition that A will itself be a probability
density. Furthermore, A will inherit all the continuity and differentiability properties of the
kemel f, so that if f is the normal density function, then A will be a smooth curve having
derivatives of all orders. Particularly, one of the edge-corrected kemel estimators of A(r)

with efficient kernel function f is (see Fiksel, 1988)

A=3 T So(=yl=r) 3.3)
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where, the summation goes over all points x and y of the pattern in the window of
observation W. || is the Euclidean distance ; f; is a kemel function ; W_ is a set of all points
z of the plane having the formz =w + x, w € W ; a = area; 0 is a band-width parameter ; r

is a distance between two points and

3 r?
(r)= 1-—Y), -8V5<r<dvs
T 4«/58( 552)

0 otherwise (3.4)

The above kemel function is a general form of the Epanechnikov kemel (Epanechnikov,
1969). Though efficient, it is not easy to implement. However, a kemel estimator using
normal distribution function provides a good estimate of the x-directional intensity function

A(x). Our adge-corrected kemel function is shown in Fig. 3-3.

We now have the intensity function both in the x- and y- direction. Hence, we can
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simulate the inhomogeneous Poisson point pattern with the aforementioned A/R scheme.
Fig. 3-4 is one of the simulations of the inhomogeneous Poisson point process assuming a
normal distribution as a kernel function. Comparing this simulated inhomogeneous Poisson
point pattern with our mapped pattern ( Fig. 3-1 ), we see some similarity. To check the
inhomogeneous Poisson point process with our mapped data, we use the inter-event
distance, nearest neighbor distance and second moment procedure (see Fig. 3-5 te Fig. 3-7
). From these figures, we see good correspondence of cur mapped pattern with the
inhomogeneous Poisson point process. Again Monte-Carlo tests for each the above three

procedures show satisfactory results, also.

3.3 Marked ( or Weighted ) Point Process

Before proceeding to the doubly stochastic point process, we introduce the marked
(or weighted) point process. Fig. 3-8 illustrates an example of a marked point process where
a point can be further characterized either by an X-mark or by an o-mark. Since a point
process itself does not give us any information on trace lengths or orientations, a marked
point process can be used when considering additional characteristics of fractured rock if
these are not too complicated. These characteristics can be included if we give marks or

weights to each point assuming that the mark represents a trace length or orientation.

Considering mark-correlation functions and the cross-mark-correlation functions,
which are similar to the second-moment properties, we can obtain information on marks
such as trace length correlations and orientation correlations. Assume that there are two
marks for each point such as the /-mark for a trace length and the m-mark for an orientation.
Now calculate the mean of the product of the /-mark of the point in one of the infinitesimal

areas and of the m-mark of that in the other one. This mean, denoted by E,, (r), is written as,
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E, (r) =k, (r)A*g(r)dF dF, (3.5)
where. k,,, cross-mark-correlation function, is a conditional mean of the product of the
I-mark and m-mark of the members of a point-pair of distance r ; A is intensity ; dF, and dF,
are infinitesimal areas ; the radial distribution function, g(r), is related to the second-order
property K by

g(r)=d-—-drK(r)/2m' (.6)

The definition of mark-correlation functions k, and k,, is analogous. The statistical

determination of k,,(r) is as follows.
1. Estimate the edge-corrected quantity p,,(r) given by
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Pl =k, (r)p(r)
Bo= 25 fillae=y =n) i)m(y)
" I 1N Ly;mv)) 2njx—-yla{ W.N Wy )

3.7

here, /(x) is the /-mark of x, and m(y) is the m-mark of y.

2. Compute ll\c,m(r) by
e (P =D, 1 B5r) (3.8)

here, py(r) is the same as the edge-corrected second-moment and can be
calculated using kernel estimator.

3. Transformed correlation functions are

8= kll(")/i'?-
2o (D= k(1) /112,
8um{r) =k 1 (3.9)

where, [ denotes a mean /-mark and so on. These functions tend towards 1 if r
goes to infinity.

Fig. 3-9 shows trace length correlations of our mapped pattern. As can be seen, this
function approaches 1 as distance increases and has an approximate value 1.8 near the
distance 0.2. From this result, we conclude that traces are heavily correlated with each

other when they get closer, and at greater distance, they become independent.

3.4 Doubly Stochastic Point Model

3.4.1 Doubly Stochastic Point Process

In this section, we use the doubly stochastic ( Cox ) point process for our rock

fracture model. The original idea of the Cox process (see Section 2.3.4) is as follows,
1. {A(x) : x € R?} is a non-negative-valued stochastic process.

2. Conditional on {A(x) : x € R?}, the events form an inhomogeneous Poisson
process with intensity function A(x).

The point process is stationary if and only if the intensity process { A(x) } is

stationary, and it is isotropic if and only if the intensity process is isotropic. A convenient
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and expressive terminology is to refer to the Cox process driven by { A(x) }. First- and
second-order properties are obtained from those of the inhomogeneous Poisson process by

taking expectations with respect to { A(x) }. Thus, in the stationary case, the intensity is,

A=E[A(X)] (3.10)
Also the conditional intensity of a pair of events at x and y, given { A(x) }, is A(X)A(y), so
that

Ay =E[A()A(Y)] (3.11)
In the stationary, isotropic case this can be written as

A (X ¥)=A2+7(r) (3.12)
where

Y(N=Cov [ A(X), Al¥) ) (3.13)

and ¢ is the distance between x and y, ¥(t) is the covariance density of the point process.

A simple example of the Cox process is to use the bivariate kermel function as an
expansion form of the univariate kernel function which was used in Section 3.2. in the
inhomogeneous point process. Assume A(.) is a bivariate probability density function and

define an intensity process { A(x) } such that

A =R Y h(x=X,) (3.14)
i=1

for a non-negative value |, where the X, are the points of a Poisson process. One of the
possible ways to construct the bivariate kemel function is to use the bivariate normal
distribution function. Thus the Cox process driven by Eqn (3.14) is also a kind of Poisson
cluster process. The above mentioned kemel function method can replicate the local
pattern of the fracture sets, but if we need to extrapolate a regional pattern from the local
mapped data, this method becomes impractical since the kemel function needs actual data
sets and, in addition, simulation of the pattern is limited to a region where the data sets are

available.

One of the promising ways to construct a regional pattern from the mappei data is to
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use the spectral density function which is frequently used in simulating the random function

(see Shinozuka & Jan, 1972). We will discuss this function in the following subsection.

3.4.2 Spectral Density Function

As mentioned before, the main efforts in the doubly stochastic Poisson point process
should be directed to finding the planar intensity function A(x). In Section 3.2, we adopted
the inhomogeneous point process with one-dimensional (or univariate) kemnel functions and
showed the corresponding modeling process. The other way to estimate the intensi‘y
function is to use the spectral density function ; this is useful if the explicit form for the

intensity measures is hard to obtain.

Briefly saying, what we want to find with spectral density functions is the intensity
function, A(x,y). We assume that the intensity function can be derived from the x- and y-
directional intensity measure since the mid point pattern in Fig. 3-1 shows clustering
behavior in the x- and y-direction, and we also assume that each directional intensity
measure is independent of the other. Then we have,

Ay =+ Wark (A () (3.15)
where. A is a mean value of the intensity measure and, in our case, the sampling average
can be used. In other words, the intensity of a region is assumed to follow a homogeneous
Gaussian distribution. Since the sampling average can be obtained from data, we need to

enumerate the functions A (x) and ky(y).

To find A (x) and Lv(y), we adopt the spectral density functions. Before employing

spectral density functions for each direction, we calculate some additional properties.

1. Modify the second moment in order to include the directional characteristics.
The definition of the second moment measure K(t) is

K(t)=A""E[ no. of further events within distance t
of an arbitrary e ent | (3.16)

or equivalently,

-----_--_---J
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lK(r):f:"J“( A (x)/A )} xdxd®
0
=2nh-1 [ Ay xx (3.17)
0

conversely,
AL(D=A22nre)" ' K(r) (3.18)
Similarly, we can define a directional second moment measure as

K(1,8)=A"1E[ no. of further events within distance t and
within angle 0 of an arbitrary event ] (3.19)

or
A1,8)=A3201)1K'(1,0) (3.20)

In our case, 0 is measured between the line connecting two selected points
and the x-axis, and is assumed to vary within 0 to 10 deg. for the x-direction
and 90 to 100 deg. for the y-direction. Fig. 3-10 shows the directional
second-moment measure for the x- and y-direction, as well as the K(¢) values
of the mapped pattern and the homogeneous, isotropic case. From Fig. 3-10,
we see the clustering behavior in the y-direction and short-range clustering
behavior in the x-direction since the second moments of these two cases are
greater than that of the homogeneous, isotropic case. However, as relative
distance between points increases, we can see the inhibitory behavior along
the x-direction. This behavior can be seen in Fig. 3-10, also.

.Find directional covariance density for each direction. A directional
covariance density function can be defined as

Y,0)=A(1,0)— A? 3.2
Fig. 3-11 shows the calculated covariance densities for each direction. For
comparison, a covariance density for the non-directional mapped case is also
plotted.

. Calculate correlation function p(t,©) from

Y(1,8)=p(t,8) Y(0) (3.22)

where y(0) is a variance of the intensity measure. If the pattern is
homogeneous and isotropic, this value becomes Y(0)=A(1-21).

. For later use, derive an exponential form for the correlation function. From
curve fitting, we estimate the x-directional correlation function as exp(-0.33x)
and that for the y-direction as exp(-0.1y). Fig. 3-12 shows the exponential
curve fitting form of the correlation function. Since t is a distance between
two points ( in our case, a point represents the mid point of a trace ) and the
correlation function p is an even function with respect to t,

p(t,0)=p(-t,0) (3.23)

In the general case, we assume that the n-fold Fourier transform of p(r) exists
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(Shinozuka & Jan, 1972). The spectral density function, S(®), of the intensity measure is

then defined as

1 ¢= -
S(w)y=—— t)ed, 3.24
(@) (Zn)nj_”p( et (3.24)

where. o is the frequency ( wave number ) vector and - is the inner product of @ and t.

Then from the properties of Eqn (3.23),

j" p(t) sin(w-)dr=0 (3.25)

and from Eqn (3.24),
S(0)=S(—w) (3.26)

Now, if we confine our interests to a mapped pattem, n becomes 1, S(w) becomes S (®) in
the x-direction and S (w) in the y-direction. Then x-directional spectral density function,

S (), becomes

l o0
S w)=o L p () cos(a>r)dt (3.27)
and y-directional spectral density function, Sy(a)), is
S_v(m)=-21; j _: p_v(t)cos((o-t) dt (3.28)
and is real.

Since we have an exponential form of the correlation function, we can obtain a
simplified form of Eqn (3.27) and Eqn (3.28). That is, if p(t) = e, then S (w) =
a/n(1+w-a?). Our spectral density functions according to this form are plotted in Fig. 3-13
and Fig. 3-14.

As a result, we can estimate the x- and y-directional intensities as follows.
1. Consider the x-directional intensity function, A (t), and assume that the

spectral density function becomes negligible outside the range ( —®, ®) ( ®is
a cut-off frequency )
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2. Divide the area under the spectral density function into small areas S (w)A®

. 20
at equal frequency intervals %

3. Now define the x-directional intensity function, A (t), as (Augusti, et al.,
1984)

N
A= Y [2S5(-® +iAw) A1 2cos[(-B+iA®)t+¢,] (3.29)
i=0

here, if angle ¢, is a realization of a random phase angle qT,., uniformly
distributeAd over (0,2rn), Eqn (3.29) becomes an ergodic periodic random
function A (t), with period T = 1t / ®.

Fig. 3-15 shows the schematic procedure to calculate the spectral density function.

In our case, we assume that the cut-off frequency is ®/2 and the number of
subdivision N is 20. The same procedure can be applied to the y-directional intensity
function A (t). With the aforementioned procedure, we can find the intensity function, Eqn

(3.15), in a region which is a realization of the Cox process.

Simulation of the Cox process driven by the spectral density functions can again be
done with the Acceptance / Rejection scheme which was discussed in Section 3.2. But in
this case, the A /R process should be used twice for the x- and y-direction (two-phase A/R
scheme) because the directional intensity function derived from the spectral density
function may have negative values. One of the simulated patterns is shown in Fig. 3-16
where we can see the clustering behavior of the simulated point pattern which is similar to
that in the original pattern (see Fig. 3-1). Again, the second-moment analysis as well as the

Monte-Carlo test show that the Cox model fits our mapped pattem ( Fig. 3-17 ).
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3.5 Conclusion

We conclude from the above results that ;

1. Our mapped pattemn (Fig. 2-1) does not follow a homogeneous Poisson point
pattern even though our case has a rather simple fracture pattern.

2. An inhomogeneous Poisson point process driven by a kemel function method
is proposed as a model for our mapped pattem. However, the kemel
functions summarize all the variations on the x-axis and, therefore, intensity
variations in the y-direction cannot be expressed.
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3. Nevertheless, using a kemel function with normal distributions, shows the
regional inhibitory behavior in the x-direction. In the general case, one could
further expand the kemel function to two-dimensional bivariate kemel
functions ; this is not done because the Cox process (see S below) provides a
better approach.

4. Trace lengths are correlated as they get closer. That is to say, a clustering
mechanism among traces can be predicted.

5. With the doubly stochastic ( Cox ) process, we are using a directional second-
moment measure and find the directional correlation function. Also, we adopt
a spectral density function with which we are able to transform the random
function into the frequency domain. From the assumption of the stationary
Gaussian random distribution, we derive the intensity distribution and
perform simulations using a two-phase A / R process. The resulting doubly
stochastic point pattern also shows a directional distribution. The doubly
stochastic point process model fits the mapped pattern with satisfactory
goodness of fit both using the second-moment analysis and using the Monte-
Carlo test.

6. As just stated, using a doubly stochastic process, we transform the intensity
measure into frequency domain and derive a spectral density function. This
means that, once we have a spectral density function for a particular area, we
can directly reproduce a similar pattern in a larger area. This is an important
advantage of the Cox process compared to the inhomogeneous Poisson point
process.

7. From the point of view of rock fracture modelling, we prefer the doubly
stochastic point process model to the inhomogeneous Poisson point process '
model. This is so because the doubly stochastic point process model is based
on the correlation measures of the mapped data while the inhomogeneous
Poisson point process model is not. I
R
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Chapter 4

FIBER (or LINE - SEGMENT ) PROCESSES

4.1 Introduction

As described in Chapter 1, the fiber process is required for fracture geometry
modelling if the traces have complex inter-actions such as intersections. In this chapter, we
only consider, for the time being, two dimensional cases. Applications of the fiber
processes to two-dimensional planar vock surfaces can be deduced from the three-
dimensional Baecher model (Baecher, et al., 1977) or can be found in Long, et al. (1982).
However, these models assume that the mid point of each trace follows a homogeneous
Poisson point process with a lognormal or an exponential trace length distributicn and with
a uniform ( or uni-directional ) orientation distribution. In some cases, these assumptions
are not appropriate and some modified medels have been developed. In the following, we
briefly introduce these recent developments in modeling of rock fractures in two
dimensions and discuss their feasibility. Also, a new rock fracture modeling scheme which
accounts for sequential generation of fractures is proposed and a new method to evaluate

the trace length distribution function is considered.

4.2 Recent Trend in Fiber Modeling

The following developments of two dimensional fracture configuration modeling

have taken place in the recent past :
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4.2.1 Homogeneous Poisson Fiber Process ( Baecher ) Model

This model is identical to that of the homogeneous Poisson point process model
except that it includes fiber length distribution and orientation distribution functions.
Assuming more thar. onc fracture set, each set of fractures is generated independently using
a homogeneous, isotropic Poisson point process. Then the individual sets are
superimposed. The location of each fracture in a set is designated by assuming that the
centers of the fractures are randomly distributed ( Poisson type ) within the generation
region. For each set, a density is supplied to determine the total number of fracture centers
to be generated. The orientation of each fracture in a set is given next. The length of each
fracture is; chosen independently. Fracture lengths within a set are assumed to be
distributed lognommally or exponentially. As a mark or weight, apertures can be assigned to
each fracture with assumed distributions ( e.g., lognormal distribution ). Fig. 4-1 shows

schematic procedures for constructing the homogen=ous Poisson fiber process.

Some mathematical characteristics for the homogeneous Poisson fiber process can be
found for each fracture set (see, Parker & Cowan, 1976, Cowan, 1979 and Stoyan, et al.,

1987);

1. Intensity of fibers ( L, ) : The total length ®(w) of all fiber pieces in a plane W can be

measured easily if an image-analyzer is employed, or if the fibers are all segments or
straight lines. An unbiased estimator for L, is given by

L,=®w)/v,(w) 4.1)

where, v, is a Lebesgue measure on R2. Otherwise, intersections with sampling lines

or circles can be used.

2. Second-order Characteristics ( K(t) ) : Define L,K(t,at) analogous to that of a point

process. L,K(t,a) is the mean total fiber length in a sector with radius t and angle o
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Figure 4-1: Schematic Procedures for Constructing the Homogeneous
Poisson Fiber Process Model ( After Long, et al., 1982)

centered at a typical fiber point. If the fiber process is motion-invariant, the typical fiber
point can be explained by Palm distribution (Stoyan, et al., 1987). The second-order

characteristics of the motion-invariant Poisson fiber processes are defined as

K(r)=L,E[rotal lengths of further fibers withindistance tof
a rvpical fiber point | 4.2)

and, especially,

¢ If we consider the Poisson infinite line process with assumed fiber intensity,
L
A

K(n=nri+2r(L, r20 4.3)

This sum has two main components ; 2r/L, is the contribution from the infinite

line containing the typical point and nr? is formed from the remainder of the
process.
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e If we consider the Poisson constant unit segment process,

K(r)=1rr2+2r(1—§)/LA if r<1

=mwri+ /L, if r>1 4.4)
o If we consider the Poisson segment process where segments have random
lengths,
2
- 2. N P
L, K(r)=L,mr2+ ondFo(x)+ Jr(Zr S)dFo(0, 720 4.5)
where

Fo(x)zjozzdF(z) /m, x20

F(z); length distribution function (4.6)
m ;, mean length

Even though the above cases have explicit forms, applications of these characteristics
to mapped data are not easy since, from a practical point of view, the typical fiber point lies
at random on a fiber. Hence to test the homogeneity of given mapped data is almost
impossible. Here, the meaning of the typical fiber point is different from that of the mid
point in that the typical point is an arbitrary point in a fiber and is only used when
calculating the second-order characteristics, whereas the mid point is a fixed point which
becomes a center of a fracture. Stoyan, et al. (1987) suggested approximate test schemes by
introducing a test system of parallel lines or of a Poisson line process. However, this scan
line method is also impractical because the spacing of the test system or the fiber intensity
of the Poisson line process influence the second-order characteristics of mapped data. This
particular property of the fiber processes makes a homogeneous Poisson fiber process

model hard to check against mapped data.

In rock fracture modeling, Some modifications appeared after the original
homogeneous Poisson fiber ( two-dimensional Baecher ) model. Dershowitz (1988)
showed an Enhanced Baecher Model by using a termination probability. If the traces

intersect the pre-existing traces, these latter traces are terminated at the intersection point
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with given probability. The termination probability is a ratio of the termination points and
the total number of traces in a map. Dershowitz also suggested a non-circular fracture

shape such as polygons and ellipses. Fig. 4-2 shows an Enhanced Baecher model with non-

circular fracture shape.

Figure 4-2: Enhanced Baecher Model
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4.2.2 Parent - Daughter Model ( Witherspoon and Long, 1987 )

Witherspoon & Long (1987) chose a Poisson cluster process (see Section 2.3.3.)
when they modeled fractures in swarms or zones. They worked in three dimcnsionai space
assuming disk-shaped fractures. but a two dimensional parent-daughter model can be
deduced from their work. The location of the parents may be purely random, i.e., a fixed
rate Poisson process, or it may be a regional variation in the density of the parents. Once
the parents have been determined, the daughters are found at some distances from the
parents with certain distribution ( e.g., Gaussian ). Fig. 4-3 is a three dimensional parent-
daughter model. The implementation of the model requires knowledge of the distribution
of the daughters per parent and the daughters around the parents as well as the density of

the parents.

There are, however, certain problems when using this model. First, several swarms
may overlap. Thus, it will be uncertain as to which parent a trace daughter belongs. Hence,
dividing the overall density into that of parents and daughters becomes ambiguous.
Second, the parent - daughter model, in most cases, shows clustering behavior near the
parents and inhibitory behavior at greater distances from the parents according to a
specified distribution form of daughters. Thus a fitting procedure for a model is not easy to

apply.

4.2.3 Fractal Model

The usual method when considering fractal geometry is to use the fractal dimension
as a main tool. If the given data follow linear relations between the number of data and the
sampling size in log-log plot, the fracture network is a self-similar fractal and the fractal
dimension is the value of slope in log-log plot whether the data are the trace lengths (see

‘Barton & Larson, 1985) or the polygons made by trace intersections (La Pointe, 1988).
But, the fractal dimension itself does not give us any information on the model and there is

little progress in modeling rock fractures using fractal geometry.
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Figure 4-3: Parent-Daughter Model in Space, after Chiles (1988)

Chiles (1988) suggested one- and two-dimensional simulation methods with fractal

geometry. But, as he mentioned, it is not clear whether the simulation procedure is related

to the fractal dimension or not.
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4.2.4 Branching Model ( Watanabe, 1986 )

This model is probabilistic rather than stochastic as far as generating the branches is
concemed. The main idea is to calculate the branching probabilities at each branching
point and check the results against the total existing length. As seen in Fig. 4-4, each
fracture is divided into many branches of constant length L,. Then, step numbers are

assigned at each branch. Using branching probabilities P, clustered fractures are generated.

Cluster of
fracture -

Step number

Figure 4-4: Branching Model of Watanabe (1986)
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4.2.5 Hierarchical Model ( Conrad & Jacquin, 1975)

Conrad & Jacquin (1975) used the terminology ’hierarchical’ when they simulate
fractures by using Poisson-type polygons and Boolean-type fissures (see also Serra, 1980).
Their hierarchical model which was applied in rock fracture modeling is used to explain the

sequential generation of a Boolean model in a domain. The concept is as follows.

1. The major network, which we name the first set, is a network of Poisson
straight lines ( or the realization of the Poisson line process ) of density
A,(da) determining convex polygons : the matrix blocks. The infinite lines in
Fig. 4-5 represent the matrix blocks.

N

. Intersect the interior of each polygon with a Boolean diagram of segments
with density A, and distribution function F(d/, da), i.e., in each polygon we
have a realization of a single Boolean diagram of segments in which their
lengths are extended to the perimeter of the polygon. In two distinct polygons
the Boolean diagrams are independent and have the same characteristics. The

finite segments in Fig. 4-5 are the realization of the Boolean diagram of
segments.

3. The matrix block generated by the above two steps is defined by the first set,
but the second set is important when describing the minor network.

4. The parameters introduced in this model are
e density A,(do) of the Poisson line process

e density of the Poisson segment process A,

e distribution function of the primary grain F(d/, do) which represent the
length and orientation of segments.

Fig 4-6 shows a simulated rock fractures network using the hierarchical model of
Conrad & Jacquin ( 1975 ). This model differs from the Veneziano model (1979) in that
the former considers polygons made by Poisson line processes as rock blocks and
remaining fibers made by a Boolean diagram of segments as rock fractures, whereas the
latter one, according to the persistence parameters, chooses some of the polygons made by

Poisson plane processes and Poisson line processes as rock blocks.
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Figure 4-5: Hierarchical model of Conrad & Jacquin (1975)
Figure 4-6: Simulated Rock Fractures Network, After Conrad Jacquin (1975)
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4.2.6 Percolation Model

In percolation theory, a medium is considered as an infinite set of sites and a bond is
assumed to be a path which connect certain pairs of sites. Therefore, two different
approaches are possible when modeling fracture systems with percolation theory. The one
is site percolation theory by Robinson (1983). In this model, segments of specified length
and orientation distributions are uniformly generated in a square. By way of the trial and
error method, one can find the critical value of segment intensity and length scale with

which percolation is to occur. Thus we can idealize fracture systems in a plane.

The other is bond percolation by Watanabe (1986). Assume an original network
composed of many sites linked together by bonds. The network is essentially defined by
the number of bonds z initiating from each site. Next, by taking out some of the bonds
from the original network, the modified networks can be constructed. In this course of
modification, the decision as to whether each bond may remain or be removed is
independently established using a fixed existence probability P,, where P, can be calculated
from a map or can be assumed. If P, is large, many bonds remain and some large clusters

linked with each other will remain.

4.2.7 Crack Tessellation Model ( Gray, et al., 1976 )

One of the interesting models of random tessellation is to adopt the crack model.
With some modification, a non-homogeneous Poisson model can be developed. A marked
point process @ is constructed on the plane, each point of ® being marked with the
orientation of a line. The edges are produced by a growth process : each edge starts at one
of the points and grows in the two opposing directions specified by the marks at a constant
rate. Growth in a particular direction continues until further edges are hit. This process is

reminiscent of crack growth.
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4.3 Proposed Hierarchical Model

4.3.1 Background

The original hierarchical model which was applied in rock fracture modeling (Conrad
& Jacquin, 1975) was used to explain the sequential generation of a Boolean model in a
domain. We are now trying to modify the idea of the original hierarchical model and apply
it to the rock fractures, where the rock fracture is assumed to be generated by geological
sequences. When we deal with the modified model, we assume that the fracture generation
sequence is known apriori. We can, therefore, model the hierarchical fracture sequence as

follows.

1. We divide the fractures into several groups according to the geological

history. For simplicity, we assume that there are two sets such as set 1 and set
2.

2. From the assumed or calculated intensity, orientation and trace length
distribution, generate set 1 of fractures on the basis of the point process.

3. Do an independence test between set 1 and the set 2. For this, we replace a
trace by a point ( i.e., mid point ) and introduce the bivariate point processes.
If we find that these two sets have no dependent relations, ignore step 4.

4. Before generating set 2, measure the interrelations ( i.e., correlations )
between two sets, where each set of traces is equivalent to a set of points.

5. If there are no such correlations, set 2 is obviously independent of set 1, and
the superimposition of set 2 is possible. If we find the correlations between
two sets, the A /R procedure can again be used to simulate set 2. If we want
to impose a termination of set 2 when it crosses set 1, we can define a
termination condition at this stage.

6. Iterate step 2 to step S according to the number of fracture sets.

In the following, we will discuss our proposed hierarchical model in detail.

4.3.2 Independence Test

Assume that the process consists of two sets of traces classified as type 1 events and
type 2 events by their geological history. If the mid points of each set are distributed

independently of each other, we can superimpose traces set by set. But if there are
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correlations between the two sets, we need to include these correlations into our

hierarchical model. For this, we use the bivariate point process when performing the

independence test.

Extension of the univariate point process ( Chapter 2 ) to the bivariate case is
relatively straightforward and will now be discussed. Define a bivariate point process which

generates events classified as type j for j = 1, 2. First-order properties are determined by

each intensity.

E[N(dx)]
A= lim _[_1___ 4.7
7 dx|=0 |dxi
and second-order properties are
E[N(dx)] E[N(dy)]
A ()= lim ( ! “4.8)
7T laxildy 10 ldx1ldy|

where the infinitesimal regions dx and dy are centered on points x and y a distance u apart.
Stationarity and isotropy imply that A, (u) = lﬁ(u).

The bivariate extension of second moment K(t) can be defined as

K,(h=2A ;'E [ number of tvpe 2 events within distance t
of an arbitrary type 1 event] 4.9)

To relate the K,,(t) to the corresponding A,,(u), note that the conditional intensity of a type
2 event at a specified location a distance u from the origin, given a type 1 event at the
origin, is A,(u) / A,. Like in the univariate case,

K,z(t)=2n(7\,,7\7)"j(:}.,2(u)udu (4.10)

It follows that K ,(t) = K, (1).

Cross-covariance densities are defined as

YIZ(")‘:A’IZ(“)_)"I}\’Z 4.11)

In practice, if we assume two independent components, type 1 and type 2, the dual
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intensity of a type 1 event and a type 2 event at any two specified locations is A,A,. In other

words, the second-order intensity function A,,(u) assumes a constant value A,A, for all

distance measure u, then Eqn (4.10) gives
K,,(t)=nr? 4.12)

and Eqn (4.11) becomes zero.

Here, independence is analogous to complete spatial randomness for a univariate
pattern in that it provides a convenient reference point for the characterization of the more
interesting bivariate structure. Generally speaking, we say that components 1 and 2 are
positively (negatively) correlated at range ¢, if the derivative of K,, - nt? with respect to ¢ is

positive (negative) (Diggle, 1983).

4.3.3 Correlation Measure

As mentioned before, if two sets of traces are not independent, correlation measures
between sequential steps become important since two sets of traces are inter-correlated and,
thus, there exist correlations which need to be included when using the hierarchical model.

Here, we will discuss two basic ideas which can be used when calculating the correlations.

We can generate the hierarchical sequences of the two fracture sets by conditioning
the mid points pattern of set 2 on the traces of set 1. This is done by using the line-kemel
function method for representing traces of set 1 and by using mid points for representing set
2. For use of a line-kemel function, we divide each trace into a set of segments in which all
segments have the same length. For each segment, the center point is obtained. Then we can
include the length effect of a fiber process by evaluating the line-kernel function over all
center points of set 1. The resulting line-kernel function can be visualized as a contour plot
around the fiber which has a peak value at the mid point of the fiber. This method requires
complicated numerical work when calculating the distances between the mid points of set 2

and the evaluated center points of set 1. From the measurement of the distances, we have
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MIT)=S jr h(tDydL (1)
1.

=C (@) [F(t]0)+C,] 4.13)

where, h(t,1) is a line-kernel function with segment length / and parameter 6 ; C,(0) and C,
are the coefficients of the line-kemel function method. Once we have the conditional
distributions for the mid points of set 2 with respect to the fiber lengths of set 1, we can also

include the orientation parameter in the line-kermel function.

The other way to measure the correlations is to modify the nearest neighbor distance
method of Chapter 2. Here one uses the nearest fiber distance from the mid points of set 2.
Any position of a fiber can be chosen when calculating the nearest neighbor distance, and
this flexible position of the nearest fiber method makes it possible to include the fiber

length effect in a correlation measure. Measuring the nearest neighbor distance, we have

AIT)=Cy0)[G(t|6)+C,] (4.14)

where, G(1|0) is an assumed nearest neighbor distance function with parameter ¢ ; Cy(0)
and C, are the coefficients of the nearest neighbor method. The parameters and coefficients

of these two methods can be found if we use MLE for a given data set.

Stoyan & Ohser (1984) proposed another method to calculate the correlations
between two sets of fibers and developed a mathematical correlation formula for the fiber
processes which are based on the second-order characteristics. But their method uses a
scan line method when choosing a typical point and also requires measurement of the
intersection angle between a scan line and a fiber. Thus, estimation of the correlations is

further complicated.
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4.4 Trace Length Distribution Function

Before we discuss the application of the hierarchical model, we need to develop a
trace length distribution. In general one knows that three sampling biases for trace lengtﬁs

exist when we adopt a scan line method ( Einstein and Baecher, 1983 ).

¢ Proportional Length Bias : Longer irace lengths have a proportionally larger
probability of intersecting the line and therefore of being sampled.

¢ Censoring Bias : Many of the traces observed in the excavation run off into the
rock walls or the overburden, and cannot be observed in their entirety. Since
this censoring occurs with proportionally higher probability to longer traces,
the sample is biased toward shorter lengths and the extreme upper tail
disappears completely. If we assume exponential distributions, we have a
closed form for the mean trace length using maximum likelihood.

(4.15)

ML Z +ZI

where,/ . is a set of completely observable traces (i=1....,/ ) and l lS a set of
traces for which only one or neither end is observable (j = 1 )

e Truncatio-. Bias : Traces shorter than some cut-off length are not recorded.

As a modification of this existing bias correction, we developed a new approach to

correct the first two biases :

The following Maximum Likelihood Estimators ( MLE ) can be used where a trace is
partitioned into three groups.
o u={uy,..u,) : Trace lengths with both ends observable
ev={v,,., | : Trace lengths with one end observable

e w={(w,..w,_} : Trace lengths with no eads observable

Now our MLE for the density functicn of trace length distribution f (x) becomes
(L) () D 0=
n P[ulL]f""_(u )H P[vlL]flL(\ )I'[ Plw |Lk]fwu_ (w) (4.16)

i=1 Jj=1

Here,
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PIuIL] @ [ f)(L-x)ds
0
PIvIL] « 2ijx(x)xdx+2f°°f,(x)de
0 L
=2 "min(x.L)f,x)dx
0

PIwIL] « j:f;(x)(x—L)dx

f,‘u,(u,') o (L—u,-)f;(u,‘)
fv) o T=F (v)

fawp) o1

(4.17)

(4.18)

here, L is a window length of the map. Fig 4-7 shows schematic estimation of our MLE.

fx)

MEx) = A f,(x)

Figure 4-7: Schematic Estimation of Trace length
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4.5 Discussion

In this Chapter, we have shown various stochastic fracture models includjng a
homogeneous Poisson fiber process and proposed our hierarchical model in which
geological history of the fracture genesis can be represented. As was predicted, the
hierarchical model needs the fiber density function as well as length and orientation
distribution functions for the sequential sets. We, therefore, have discussed the possible
measurement statistics of the independence test and correlation measurements in order to
find the fiber density functions. The main difference between this modified hierarchical
model and the existing models is the realization of the correlated behavior of the sequential
sets which is not fully implemented in the existing models. In addition, we developed a

new technique to measure the mean trace length by utilizing MLE.

In the next Chapter, we will apply the above mentioned model and related statistics to -

real mapped data and discuss the feasibility of our model.
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Chapter §

APPLICATION OF THE HIERARCHICAL MODEL

5.1 Introduction

In applying the point process for modeling of fracture patterns, we have chosen a
simple mapped pattern (Fig. 2-1) and developed appropriate fracture models based on the
doubly stochastic point process and based on the inhomogeneous Poisson point process (see
Chapter 3 for details). On the other hand, if the mapped pattern involves complex
interactions among traces or fracture termination points, the point process is not an
appropriate method for modeling fracture patterns. A further step is therefore to introduce a
fiber process model, and to incorporate it in a hierarchical model. Fig. 5-1 is chosen as the
mapped pattern (see Barton & Larson, 1985) to be modeled. It shows intensely fractured
zones and complex interrelations among traces. Fig. 5-2 is a digitized trace map of Fig. 5-1
without the intensely fractured zones (shaded in Fig. 5-1). For the use of the hierarchical
model, we divide the pattern in Figs. 5-1 and 5-2 into two characteristic sets. Set 1 is the
group of fractures in which all traces have uni-directional orientations and have no common
intersection points with each other (see, Fig. 5-3), while set 2 represents the remaining
traces (see, Fig. 5-4) excluding, however, the intensely fractured zones (shaded in Fig. 5-1).
Incidentally, our assumption for the two sub-sets is identical to the classification used by
Barton and Larson (1985) who grouped the traces according to their apparent aperture
width. The mid point pattems of the traces shown in Fig. 5-2 to Fig. 5-4 are shown in Fig.
5-5 to Fig. 5-7, respectively, assuming that the half length point is identical to the mid

point.
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5.2 Step 1 - Midpoint Generation of Set 1

As can be seen in mid point map of set 1 (Fig. 5-6), both clustering and inhibitory
behavior exist. Therefore, a possible alternative to a homogeneous, isotropic Poisson point
pattern for set 1 might be a parent-daughter model. However, if we use the parent-daughter
model. we might not be able to simultaneously represent the inhibitory and the clustered
behavior, unless we use one more parameter such as inhibitory distance or we use a
regionalized intensity function A(x) instead of a constant value A as explained before in
Chapter 4. We, therefore. use the doubly stochastic (Cox) point process to model fracture

set 1 with the hierarchical model.

Fig. 5-8 shows a directional second moment of set 1 in which characteristic directions
of 30-40° and 120-130° (counter-clockwise from the East) are used. In this particular case,
if we confine our interests to small distances (e.g., up to 5m in Fig. 5-8), we cannot see any
significant deviations from the isotropic case which is also shown in Fig. 5-8. The isotropic
case is plotted for comparison and is identical to a homogeneous Poisson point process
where the second moment, K(t), is identical to wt2. This special situation of non-deviation
from the isotropic case is quite probable since our mapped pattern has only 39 points, and
we, therefore, cannot see any interactive behavior using the second moment. It also means
that it is not possible to derive a correlation function directly because the correlation

function becomes zero in an isotropic case. For this particular case, we modify the intensity

function as follows.

InA(X,¥y)=InAy(¥)+E(X,¥)

~ of, p,,(Ay)+o§pc(r) (5.1
and
InAy(¥) ~ Co(AX.AY) = og,p(,(A.v)
€(x,y) ~ C(AxAy) = o.p.(r)
r = VAXZ+Ay? (5.2)
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Figure 5-8: Directional Second Moment of Set 1.
Characteristic directions of 30-40° and 120-130°
are used to calculate the directional second moment.
Isotropic case is also shown for comparison.
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We assume that, due to the properties of a spectral density function, the mean intensity is
governed only by the y direction and the clustering behavior is controlled by distance r (see
Eqn (5.2)), where x and v are the transformed coordinates with the axes rotated by 40°

(counter-clockwise from the East) and C(.) is an assumed covariance function.

With the Acceptance / Rejection scheme (Lewis and Shedler, 1979), we performed
50 simulations ; one of the simulations is shown in Fig. 5-9 where we assume that 0(2, = of =
0.5, p(t) = 0.33t and p,(t) = 0.5t. The second moment analysis of set 1 shows that a good
similarity between the simulated and actual (mapped) point pattern exists ( Fig. 5-10 ). The
Monte-Carlo test also shows a satisfactory result. The Cox process can thus be used in a

first step of the hierarchical model, particularly where both clustering and inhibitory

behavior exist at the same time.

5.3 Step 2 - Traces of Set |

The next step is to generate the traces for the simulated mid points of set 1. This
simulation uses trace length statistics corrected for biases using the maximum likelihood
formulations as derived in Chapter 4. In this case, set 1 has 15 u type traces (both ends
observable), 22 v type traces (one end observable) and 2 w’ type traces (no ends observable).

For simplicity, we neglect the w type traces.

The log likelihood of each trace type and the log likelihood of all traces are shown in

Fig. 5-11, while a realization of the simulation is shown in Fig. 5-12.
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5.4 Step 3 - Independence Test

In step 3, dependence or independence between sets 1 and 2 has to be established. If
there is no dependence between set 1 and set 2, we can generate each set by simply
superimposing the traces set by set. One cf two independence tests either the perturbation

method or toroidal shift method can be vend.

In the perturbation method, we calculate the (bivariate) second moment of the
mapped pattern. We, next, perturb the mid points of set 2 by a small amount. This
perturbation distance can be obtained using a random number generator. Then the second
moment for the perturbed data is calculated. After a sufficient number of iterations, the
significance (i.e., rank) of the second moment using the mapped pattem is estimated among
those from perturbed data. Instead of perturbation, toroidal shifting of set 2 can be used as
suggested by Lotwick and Silverman (1982). That is, instead of a small distance on a
plane, a random distance on a toroid is used when perturbing the second set. Otherwise, The

remaining procedure is the same as the perturbation method.

If the mapped patten is composed of two independent Poisson point processes,
where a Poisson process implies the stationary, isotropic behavior, the second moment
measure will be as shown Fig. 5-13. For calculations in Fig. 5-13, we assume that the
number of traces in set 1 is 39 and 138 in set 2. These numbers are the same as those in the
mapped pattern of Fig. 5-5. As can be seen, the shifted bivariate second moment, K(t) - mt?,
is almost zero (i.e., independence) and satisfies the Monte-Carlo test since we assumed two
independent Poisson point processes. However, with real mapped data, the shifted second
moment is not zero and set 2 is positively correlated with set | (see Fig. 5-14). The Monte-
Carlo test also rejects the independence assumption. From this result, we conclude that our
mapped data set is neither homogeneous nor isotropic, and that it shows clustering. That is,
cet 2 has a tendency to get closer to set 1, or, in a rock mechanical sense, if there is a

pre-existing fracture, the next one tends to be near the pre-existing fracture.
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5.5 Step 4 - Generation of Set 2 Midpoints

In the preceding steps, we have found that set 2 is not independent of set 1 and that
there are positive correlations between the two sets. Thus, we use correlation measures
when generating the mid point pattem of set 2. For this, we propose two possible
correlation measure methods namely the line-kemel function method and the nearest

neighbor fiber method.

When using the line-kemel function method, we divide each trace of set | into a
number of segments of identical length, and we measure the center point of each segment.
Next, we calculate the distance between a center point of a set 1 segment and a mid point of
set 2. Using a bivariate normal distribution function, we derive a two-dimensional kemel
estimate which has a circular distribution. This is done for all center points ; it produces the
line-kemel estimates for our mapped data. To describe the relative uniformity of the

pattern, we use a mixed distribution when calculating the MLE for conditional intensity :
1-C ¢
ftxyle.01=5 + 255 [ Kxylora (5.3)
A m g
where, f,(x,v|0,C) is a conditional density function mixing the uniform distribution and
the line-kernel function, C and G are parameters which can be estimated using MLE, A is
an area, n, is the number of traces of set 1 and n, is the number of the mid points of set 2.
The first part of the right-hand side of Eqn (5.3) comes from the uniform distribution of the
pattern, and the second part is from the line-kernel function with which local clustering can

be described.

Using MLE, we find C as 0.65 and ¢ as 0.75, and perform 50 simulations. One of
the simulated mid point patterns is shown in Fig. 5-15. The goodness of fit is checked with
two different methods. One is to use the bivariate second moment ( K, ) with which the

mid point patterns of set | and set 2 are compared. The bivariate second moment is shown




-103-
in Fig. 5-16 ; good agreement between the mapped data and the simulated pattern is
obtained. The other check is based on the (univariate) second moment ( K,, ) in which only
the mapped data and simulated pattems of set 2 are compared (Fig. 5-17). This also shows
acceptance of the simulated pattern. From these results, we conclude that the conditional
intensity measures driven by the line-kemel function method are satisfactory. The mixture
medel using the line-kernel function is thus a suitable procedure to generate the mid point

pattern of set 2 correlated with set 1.

Instead of the line-kernel function method, the nearest neighbor distance method can
be used as a correlation measure. The main idea is to find the nearest fiber from a mid
point of set 2. The nearest fiber distance can be measured between a mid point of set 2 and
an arbitrary point in a fiber of set 1. Since the nearest distance can involve any point on a
fiber of set ‘1, this scheme makes it possible to include the fiber length effect. To find the
conditional intensity function, we again use a mixed distribution, i.e.,
fn(x,le,O'):% + -l—r;—CG(x,yIO') 5.4
where f,(x,¥|C, ¢) is a conditional intensity function with parameters C and 6. G(x,y|0)
is a nearest neighbor distance distribution function which is assumed to be normally
distributed. Again, we assume that the conditional intensity function is mixed with the
uniform distribution. From MLE, we found C = 0.65 and ¢ = 0.2. One of the simulated
mid point patterns of set 2 is shown in Fig. 5-18. As we did with the line-kemnel function
method. we compared the simulated pattems with mapped data. Fig. 5-19 is a bivariate
second moment analysis of sets 1 and 2, and Fig. 5-20 is a (univariate) second moment
analysis of set 2. These results also show an acceptable goodness of fit of the mixture

model driven by the nearest neighbor fiber method.

The advantage of the nearest neizhbor function method is that it only considers a

point within a fiber which becomes a nearest neighbor, while the line-kemel function
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F igure 5-15: One of the Simulated Mid Point Patterns of Set 2
Using the Line-Kernel Function Method to Express Correlation.
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Figure 5-17: (Univariate) Second Moment Analysis for Set 2 Mid Points Using

the Line-Kemel Function Method.
Symbols are the same as those in Fig. 5-16.
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method requires an additional step when calculating the line-kemel function. That is, we

need to calculate the kernel estimates of all the segments in a fiber.

5.6 Step 5 - Generation of Set 2 Traces

Once we have a mid point pattemn of set 2, we determine the trace length and

orientation for each point of set 2 :

First, the mean trace length can be calculated using MLE as described before for set
1. With MLE, we estimate the mean trace length to be 2.5m assuming that there are no

trace length correlations between sets 1 and 2.

To find the orientation correlations, we again consider the nearest fiber concept.
Since we have assumed that the orientation of set 1 is constant (fixed at 40°, see Fig. 5-3),
we calculate orientation distributions of set 2 conditional on set 1. Fig. 5-21 shows the
orientation distribution of set 2 without considering the correlation measures. When we
calculate the orientation distributions of set 2 as a function of the nearest neighbor distance
to set 1, we find that there are no correlations between the sets. This is evident from Fig.
5-22 where the orientation distributions of set 2 obtained by the nearest neighbor distance to
set 1 ( Im, 2m and 3m ) are plotted. Also, the distribution of Fig. 5-21 is plotted for
comparison. Thus, we only need an orientation distribution function for set 2 without any
conditions. For this, we applied two distribution functions which have distribution forms on
a circle. One is the Von Mises distribution (Eqn (5.5)) and the other is the wrapped normal

distribution (Eqn (5.6)) ( see Mardia, 1972 or Fisher, et al, 1987 ) :
f(0)=

21”1 ) exp(Kcos (0-a)), 0s0<2m (5.5)

With
(0.5K)2. (0.5%)F (05%)5
o 22 tamar t

I(x)=1+

where, K is a shape parameter and « is a location parameter.
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co — Y — 2
A®)=[cV2r'S exp(—(_e_%o_ff"_)), 0<0<2n (5.6)

where. o is a location parameter and 62 is a shape parameter.

To fit the data, we use the bi-modal form of the orientation distribution function, i.e.,

for the Von Mises distribution,

C
ﬂe)_m exp(xcos (6—-a))
1-C

and for the wrapped normal distribution,

oo _- - " 2
f(8)=CloV2r]"' ¥ exp( © oéof'n))
hd -— Y — T — 2
+(1-0)[oVZRF' S exp(-L2 “2’;22”‘)) (5.8)

In our case, C is 0.5. Using MLE, we find the parameters for the Von Mises distribution to
be o = 105° and x = 1.9, and for the wrapped normal distribution oo = 105°, ¢ = 0.8. Fig.
5-23 shows the orientation distribution forms of these two functions as well as the
orientation distribution of set 2. To evaluate the appropriateness of these models relative to
the mapped data, we performed a Kolmogorov-Smirnov test for each case. Both
distributions fit the data at the 5% significance level. Both models can thus be used to
simulate the pattern of set 2. Fig. 5-24 is a simulated pattern of set 2 with the mid point
pattern obtained by conditional intensity functions (see, Section 5.4) and with the Von
Mises orientation distribution. Fig. 5-25 is the same except that the orientation distribution

is the wrapped normal distribution.
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Figure 5-21: Orientation Distribution of Set 2 on a Circle
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Figure 5-23: Wrapped Normal and Von Mises Orientation Distribution Fitted
to Orientation Data of Set 2
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Figure 5-25: Trace Pattern of Set 2 with Wrapped Normal Distribution
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5.7 Step 6 - Termination

We now have the mid point pattern, mean trace length and orientation distribution of
sets 1 and 2. The remaining issue is to define a termination probability among traces.
Dershowitz and Einstein (1988) defined the termination probability by counting both the
intersection points and the termination points among traces. An intersection point can be a
crossing point or a termination point as illustrated in Fig. 5-26 (a) and (b). The
Dershowitz/Einstein termination probability is simply the ratio of termination points /
intersection points. However, in our mapped pattem, this method is not appropriate
because traces of set 2 cross traces of set 1 at many intersection points, i.e., an intersection
of a set 2 trace with a sct 1 trace is not necessarily a termination. To express the
termination probability more appropriately, a new definition is introduced here. All
termination points and crossing points are counted except the points between ihe center of a
set 2 trace and the farthest intersection point. Thus, in Fig. 5-26 (1), each trace of set 2 (try
has a maximum of two intersection (crossing or termination) points (A and B) ; it can also
have only one or none. Using only these corrected intersection points, we derive
termination probability as the ratio of termination points / intersection points. This
procedure introduces some distortion in the distribution of set 2 trace lengths ; however, the
resulting bias does not appear to be serious. Fig. 5-26 illustrates the determination of this
termination probability. If the pattern is not complicated, the termination probability with
our new termination scheme is the same as that of Dershowitz and Einstein (1988) as in
Fig. 5-26 (c), but if the pattern is complex, the new termination probability will be different

(Fig. 5-26 (d)). This termination probability is used when simulating the pattem.

We have now reached the point where the modeled fracture pattem can be completed.
The simulated patterns of PA100 with the Von Mises orientation distribution function is

shown in Fig. 5-27 and with the wrapped normal distribution function in Fig. 5-28.
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Figure §-26: Calculation of Termination Probability
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5.8 Concluding Comments

In applying the fiber process to model fracture trace distributions, we did the

following :

1. We divide all the traces of a map into two sets according to orientation and
we define sets 1 and 2.

2. A doubly stochastic point ( Cox ) process is used as a model for the mid point
pattern of set |.

3. With a new MLE scheme, we calculate the mean trace length for each set
assuming an exponential trace length distribution.

4. Using the bivariate point process, we find that mid points of set 1 and set 2
are dependent on each other and that they are positively correlated.

5. To calculate the conditional intensity of set 2, two correlation measure
methods are used. One is the line-kernel function method and the other is the
nearest neighbor fiber method. Using these two schemes, we simulate the mid
point patten of set 2 ( the nearest neighbor fiber method is easier to use than
the line-kemnel function method ).

6. The Von Mises and the wrapped normal orientation distributions on a circle
are proposed as models for set 2, whereas a fixed orientation of 40° is used in
set 1.

7. To consider the terminations among traces a new termination probability is

proposed such that a trace is terminated at the farthest end with a prescribed
probability.

In Chapter 4 and 5, we proposed our hierarchical fiber model and studied its
feasibility. It showed that fracture traces of several dependent or independent sets can be
modelled with the hierarchical procedure. The maodels can represent clusters as well as all
the other geometrical characteristics. The application discussed in this chapter related to

only two sets but the hierarchical model can be just as easily applied to a larger number of

sets.
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Chapter 6

TOPOLOGICAL APPLICATION OF FRACTURE GEOMETRY
MODEL : SLOPE STABILITY ANALYSIS

6.1 Introduction

When modelling the performance of fractured rock, be that slope stability,
deformation under foundations and around tunnels or flow through the rock mass, both the
geometry and the mechanics need to be represented. As was shown in preceding chapters, it
is now possible to represent the two dimensional stochastic geometry by the hierarchical
fracture model. Also, developments toward a three dimensional hierarchical fracture

modelling are under way.

What will be discussed in this Chapter is the combination of the fracture geometry
model with suitable mechanical models to represent slope stability. As will be discussed in
more detail below, the mechanical models for slope stability involve models representing
sliding along discontinuities (fractures) and models representing the creation of new

fractures in intact rock which interconnect existing fractures.

6.1.1 Previous Research on Slope Stability

Several studies on rock slope stability have been performed using stochastically
generated fracture pattems and applying simplified or idealized mechanical models for

fracturing of intact rock.

Glynn (1979) generated a parallel fracture pattem with the two dimensional
Veneziano model (Veneziano, 1979) and used an idealized mechanical model. Specifically,
stress increments both in the horizontal and vertical direction were created so that an en

echelon fracturing could be reproduced. O’Reilly (1980) modified Glynn’s idealized




-123-
mechanical model by introducing both tensile and shear failure mechanisms. A further step
was accomplished by Shair (1981) who expanded O’Reilly’s geometric model by
considering two fracture sets which are not necessarily parallel. Einstein, et al. (1983)
summarized the above mentioned models and performed parametric studies on geometric

and on mechanical variables.

All these models are restricted to two dimensions by assuming an infinite extension
in the third direction. A solution to the three dimensional stability problems using
stochastic fracture geometry was described by O’Reilly (1980) ; however, his application
was resticted to a special case. Numerous applications dealing with three dimensional
sliding tailure and deterministic geomet 1st (e.g., Einstein, et al., 1979 ; Hoek and Bray,

1981). but they are not directly related to the problem at hand.

6.1.2 Proposed Work on Slope Stability Analysis

In this preliminary study, we will first consider the fully persistent model of a slope.
The fully persistent model is useful when rock block behavior dominates slope stability.
Later, fracturing through intact rock and between existing fractures will be included. For
simplicity, our work will be confined to two dimensional case only. Slope stability

modelling will be approached as follows :

1. Geometric construction of fracture paths : Depending on the actual fracture
pattern, either the homogeneous Poisson point (or fiber) process model or the
hierarchical fiber process model is used to generate the network of fractures in
a given two dimensional slope.

2. Kinematic updating : All the possible rock blocks (i.e., fully persistent
blocks) that can be produced with the fracture pattern are simulated and those
which are kinematically admissible are identified.

3. Kinetic (or mechanical) testing : Using an appropriate mechanical model, the
kinetic stability of the kinematically movable blocks is determined.

4. Parametric Studies : By changing values of both the mechanical and the
geometric parameters, the significance and the influence of these variables on
overall behavior of the slope stability is studied.
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6.2 GGeneration of Fracture Pattern

Generation of planar fracture pattems in a given rock slope is basically the same as
that in a two dimensional planar surface. Therefore, various fiber process models can be
used (see Chapter 4). Conventional models (e.g., the two dimensional Baecher model and
the Dershowitz model, see Dershowitz and Einstein, 1988) used the homogeneous Poisson
process model for fracture locations and an exponential or lognormal distribution of
fracture lengths. Very often, in slope stability problems, fracture traces are assumed to be
parallel to each other. However, in this study, a modified orientation distribution is also
used; either the von Mises or the wrapped normal orientation distribution is adopted, in
addition to the parallel orientation distribution (As we will discuss later, the non-parallel
orientation will cause a more complicated rock block behavior. That is, the generated rock
blncks consisting of one or two sets of parallel fractures have a well defined prescribed face
on which sliding occurs, whereas the blocks constructed from the non-parallel orientations
do not have unique sliding faces. The sliding faces can only be dctermined after the
simulation of the particular fracture pattern is performed. Also, the kinematic admissibility
becomes much more complicated to check). Finally, one can include the fracture
termination probability as in Dershowitz and Einstein (1988) or by using our new concept

discussed in Chapter 5. At present, this is not done here.

Once the slope boundaries and fracture network are generated, one needs to find the
effective fractures. An effective fracture is defined as a fracture which can be a part (i.e., a
face) of a rock block. It must, therefore, have at least two intersection points with other
fractures or with the slope boundaries. In essence, effective fractures are interconnected
fractures. Effective fractures are thus relevant both in slope stability problems and in flow
through rock masses. One can imagine a few algorithms to find the effective fractures; we
will use an iterative searching scheme with which the non-effective fractures are

sequentially eliminated during iterations. As shown in Fig. 6-1, in each iteration, the non-
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effective fractures are eliminated, and this in tum induces further eliminations of the

fractures which are originally connected to them. Our results show that, within at most §

(a)

EFFECTIVE FRACTURES

ELIMINATED FRACTURES AT FIRST ITERATION
................ ELIMINATED FRACTURES AT SECOND ITERATIONS
(b)

Figure 6-1: Iterative Searching Scheme for Effective Fractures
(a) Initial Fracture Network
(b) Iterative Searching Scheme for Effective Fractures
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iterations, all the non-effective fractures are eliminated. The elimination of the non-
effective fractures is also an important step in relation to the program storage design since
the effective fractures rather than total number of fractures or intersection points are used to
define kinematically admissible fracture paths. As a consequence, one can improve the

efficiency of the path-searching algorithm.

6.3 Kinematic Analysis

After removing the non-effective fractures and constructing all possible rock blocks,
one needs to check whether a constructed fracture path is kinematically admissible or not.
Since the fracture orientations (i.e., dip angles) are not necessarily parallel, one cannot
predict sliding faces or the block shapes beforehand. Therefore, a systematic kinematic

analysis is necessary.

6.3.1 Construction of Connectivity Matrices

A connectivity matix is used to find all the appropriate fracture paths (or fully

persistent rock blocks) among effective fractures.

Assume that the intersection points between effective fractures and slope boundaries
are known. One can, then, construct a connectivity matrix by employing effective fractures
and slope boundaries (i.e., slope face and free surface, see Fig. 6-2). Since all the fracture
paths are composed of either face-to-face paths (paths starting and ending at the slope face)
or face-to-surface paths (paths starting in slope face and ending in surface), one can
consider the slope boundaries as effective fractures. For this reason, the corresponding

dimension of the connectivity matrix, N, is
N = Number of Effective fractures + 2 6.1)

To construct a connectivity matrix, we assume that each element of the matrix
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represents either the x- or the y-coordinate of the intersection point and each row or column
of the matrix represents an effective fracture or a slope boundary. Therefore, the
connectivity matrix becomes a square matrix with dimension N. To simplify the searching
algorithm, one can assume that the first row/column is the slope face and the last
row/column is the surface of the slope. One can then store the intersection points in the
appropriate places of the connectivity matrix according to their relationship to the effective
fractures or slope boundaries. Since an effective fracture and a slope boundary cannot
intersect itself, the connectivity matrix has a zero diagonal and is symmetric. An example
connectivity matrix is shown in Fig. 6-3. In Fig. 6-3 (a), effective fractures including slope
boundaries are numbered such that the slope face is effective fracture 1; the surface is
effective fracture 5. The remaining fractures are numbered arbitrarily. Fig. 6-3 (b) is the
complete matrix for this case. For example, effective fracture 1 intersects effective fracture
2 at x-coordinate 1, and effective fracture 3 intersects effective fractures 2 as well as 4 at

x-coordinates 2 and 3, respectively.

free surface

Qe

face-to-surface path

height
S,
006

face-to-face path

0 (slope angle )
N B e range

Figure 6-2: Typical Rock Slope Configuration
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Figure 6-3: Example of a Connectivity Matrix [C ]
(a) A Simulated Effective Fracture Pattern
(b) Construction of a Connectivity Matrix (x-coordinate)
(c) Searching Scheme for a Fracture Path
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6.3.2 Kinematic Consideration

Once the connectivity matrix constructed, the next step is to find the kinematically
possible fracture paths using the connectivity matrix. The information on the fracture paths
are the coordinates of intersection points which become vertices of the blocks. For this,
either the x- or y-coordinate system can be employed in the connectivity matrix and in the
searching scheme. The other x- or y-coordinates of the intersection points which are not
used in the connectivity matrix can be found easily if the intersection points are numbered

sequentially, and the coordinates of the intersection points are stored correspondingly.

The searching scheme for the kinematically admissible rock blocks is similar to the
dynamic programming scheme used by Glynn (1979). It searches for a fracture path and
kinematic admissibility of the path simultaneously. In the following, we will explain these

separately for reasons of clarity:

The search for a fracture path which defines a fully persistent rock block follows the

sequence of steps cited below (see also Fig. 6-3 (c)):

1. Start always at row 1 of the connectivity matrix, where row 1 represents the
slope face.

2. Search for the non-zero element in row 1. If the non-zero element is
encountered in the j-th column, store the information (i.e., the corresponding
effective fracture and intersection coordinate) and go to row j. It means that
an effective fracture, designated as the j-th fracture, is intersecting the slope
face at the stored value of the connectivity matrix.

3. Starting from column 1 of fracture j, find the non-zero elements of the j-th
row of the matrix. If the non-zero element is the same as the one stored
before, neglect it since this is an interesection point which was previously
found. If the column 1 has a non-zero element, store the information. It
represents a face-to-face path. If the last column has a non-zero element,
store it also. In this case, the corresponding fracture path will be a face-to-
surface path (Recall that row/column | represents a slope face and
row/column N represents a free surface, where N is the total number of the
effective fractures including slope boundaries, see Eq. (6.1)).

4. In step 3, if the k-th column of row j has a non-zero element, go to row %, i.e.,
fracture k.

5. Iterate steps 3 and 4 for row & to find a complete fracture path. Whenever a
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fracture path is detected in row / and non-zero elements still exist in row /, go
back to the previous step (i.e., row [/ - 1) and search for another non-zero
element (i.e., another fracture path) until no more non-zero elements are
detected (see steps 5 of Fig. 6-3(c)).

To eliminate the kinematically inadmissible fracture paths, the following assumptions

are made during the searching algorithm :

1. If the relative location of the next intersection point compared to the position
of the current intersection point lies in region IV (see, Fig. 6-4a), neglect the
corresponding fracture path since it is kinematically inadmissible. Unless this
assumption is made, a sliding rock block will penetrate into the rock mass.

[

.If row j of the connectivity matrix is encountered again during a path
searching process, ignore the corresponding path. It means that a concave or
convex sub-block within a rock block is generated and, which is kinematically
unacceptable unless a breakdown of concave/convex sub-block occurs (Fig.
6-4b).

3. Conceming the face-to-face path, even if kinematically admissible, whenever
the location of the starting intersection point of a path is higher (i.e., nearer to
the slope surface) than that of the ending point, neglect that path (Fig. 6-4c).
In this manner, the face-to-face path will be only counted once, namely going
upward.

4. To eliminate a stair-shaped path (Fig. 6-4d), do not consider paths when the
the advancing fracture path has negative orientation (see Fig. 6-4a for
symbols) and the absolute value of it, |B|, is greater than the minimum dip
angle, ||, on which a rock block is sliding down.

6.4 Kinetic Analysis

In the preceding steps, we have found the kinematically admissible fracture paths.
The remaining task is to analyze whether the kinematically admissible fracture paths are
kinetically or mechanically stable or not. For this, we will use Coulomb’s shear failure

criterion as a mechanical model (other models can be easily implemented).

As mentioned in the introduction, we assume that the fracture path making up a rock
block is fully persistent and that the dip angles of the fractures are not necessarily the same
(i.e., parallel). One cannot, therefore, predict the minimum dip angle on which the rock

block is to slide until the kinematic analysis is performed. The minimum dip angle plays an
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Figure 6-4: Kinematically Inadmissible Fracture Paths

important role when one predicts the block behavior. As shown in Fig. 6-5, if the rock
block is assumed to behave as a rigid body, i.e., if an intact rock failure is not allowed, there
exists only one contact face on which the block can slide. This is a special case since we
have assumed that the fracture orientations are not paralle] such that a fracture which has
the minimum dip angle becomes the contact (i.e., sliding) face. In the following, we will

discuss this particular block behavior in detail.

6.4.1 Assumptions used in Stability Analysis

To solve the slope stability problem, the following assumptions are made in the

kinetic analysis :

¢ The problem is two dimensional, i.e., slope boundaries and fractures are
assumed to extend infinitely in the third dimension.
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Figure 6-5: Rigid Body Motion of a Typical Rock Block
Along a Face of Minimum Dip angle o

o Failure of a rock block is assumed to occur along the fracture with the
minimum dip angle. Two failure mechanisms are possible ; sliding and
separation along the fracture faces.

¢ Failure occurs when the driving force exceeds the resisting force and we will
apply the Coulomb criterion in this case.

¢ A tensile cut-off stress is used when considering the separation mechanism.
e Water pressure, rock bolt force and seismic effects are neglected.

¢ Toppling is assumed to be impossible, and, therefore, rotational behavior is not
considered.

e A rock block is assumed to be fully persistent and rigid such that an intact rock
failure or an en echelon failure mode (i.e, failure of intact rock which connects
the adjacent existing fractures) is not possible.

These assumptions are idealized representation of field conditions and future work

will eliminate some of these assumptions.

6.4.2 Simplified Mechanical Model for Sliding

As explained above, sliding will only be considered on the fracture plane with the
minimum dip angle (one may include the tensile cut-off stress, (ooj), when considering
separation between blocks). As is well known, the shearing resistance on a sliding fracture

face is
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and correspondingly the resisting force, R, is

Ri=7,A (6.3)

where, G, is the average normal stress which can be derived from the total block weight W ;
C; and ¢, are the cohesion and the friction angle of a fractured face, respectively ; A is the
initial contact area of the fracture with the minimum dip angle. Since a two dimensional
plane failure case is considered, the rock block is assumed to have a unit length in the third

dimension.

The resisting force due to separation can also be included such that the total resisting
forces on a rock block can consist of the shearing force on a sliding face and the tensile
cut-off force on separating faces. The tensile cut-off force, R, which is conservatively a
scalar sum of all the components along the separating faces can be written as

N
R, = ZI O, A; (6.4)
i=

where, N and A, are the total number of separation faces and the area of the separating face

of a rock block, respectively. The total resisting force is therefore,
R=R;+R, (6.5)

The resulting safety margin, SM (Einstein, et al., 1983), and the safety factor, SF, are

calculated as

SM=D~R
R
SF_B (6.6)

where, D is the total driving force and can be calculated from Fig. 6-5 as D =W sina

along with the minimum dip angle o.
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6.4.3 Program TRACESIM (see Appendix D for details)

To generate a fracture pattern in a slope, which does not necessarily follow a
homogeneous Poisson fracture process, and to perform the kinematic as well as the kinetic
analysis of the fully persistent rock block model, a new computer code, TRACESIM, was

developed. The main features of the program TRACESIM are :

1. Up to 10 effective fractures can be included in one rock block; at present, a
rock block which has more than 10 faces is not considered. However,
modification for more complex block patterns which can include more than
10 effective fractures is possible.

(9]

. Both the homogeneous and the non-homogeneous Poisson fracture pattem
can be simulated. However, among non-homogeneous fracture pattems, only
the Poisson cluster model (Diggle, 1983) can be considered. For more
accurate modelling of the fracture pattern, the existing program POINT (see,
Chapter 4 and Appendix D for details) which was developed to simulate the
non-homogeneous (hierarchical) fracture process model should be employed.

3. An exponential or a lognormal fracture length distribution can be simulated.

4. The von Mises, wrapped normal, uniform and unidirectional orientation
distributions can be simulated.

5. Analysis of two or three fracture sets which have different mechanical (i.e.,

Cj, ¢, and an) or geometric (i.e., trace length distribution and orientation

dlstrii)ution) properties is possible.

6. An auxiliary plotting program TRACESIMP is available for post-processing
and plotting of the resuits.

7.1t can consider not only the conventional face-to-surface rock block which
may be convex or concave, but also face-to-face blocks.

6.5 An Example of Slope Stability Analysis

To test the applicability of the concept developed in Sections 6.3 and 6.4, and of the
program TRACESIM, we will analyze the example shown in Fig. 6-6. As illustrated in
Figs. 6-7 and 6-8, there are initially 40 fractures in a slope, and subsequently 6 effective
fractures with 10 intersection points. A von Mises orientation distribution with a high
concentration factor and an exponential tracc length distribution are used in Fig. 6-7. As

can be detected visually in Fig. 6-8, there exist 3 kinematically possible fracture paths. The
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Figure 6-6: Configuration of a Slope Example

kinetic analysis shows that two of the paths are unstable (see, Figs. 6-9 and 6-10). Finally,
the safety factors, SF, are calculated for these two unstable paths and the failure path for the

case with the minimum SF is plotted in Fig. 6-11.

Through Monte-Carlo simulations, in which one parameter is varied at one time
while the others are held constant, one can determine the influence of the geometric and

mechanical parameters.

6.6 Parametric Studies of a Slope with Fully Persistent Fractures

So far an example for a fully persistent set of fractures with fixed geometric and
mechanical parameters has been given. In this section, parametric studies will be
performed to establish relationships between various parameters and the safety factor (i.e.,
the probability of failure), and to find the most significant parameter. Initially, the
mechanical parameters, such as cohesion {C j}, friction angle M’i} and tensile cut-off stress
{onj} of the fractures, are changed one by one. Later, the geometric configurations such as
mean orientations, mean trace length and the midpoint model of the fractures are also

varied and their influence on the safety factor is investigated.
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Figure 6-11: Critical Fracture Path

Table 6-1 shows initially fixed and subsequently varied values of all the parameters.
As was the case in the previous example, we do not specify the units of the mechanical or
geometric parameters. Any consistent system of units can be used. Also, slope
configuration is the same as shown in Fig. 6-6 and the initial midpoint model is the
homogeneous Poisson process with 50 fractures. Table 6-2 lists the cases which are

considered in the present study.

6.6.1 Case 1: Variation of Cohesion

Before proceeding to detailed analyses of the parametric studies, we calculate the

probability of failure, P, . Calculation of P, is composed of several steps;

1. For a given case, we perform 50 simulations per parameter state of the varied
parameter (the parameter states are listed in Tab. 6-1 ). The resulting data set
has hundreds of possible rock blocks, most of which come from the small
variations of fracture paths. To simplify the data set, we choose the maximum
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Table 6-1 Initial and Changing Values of Parameters

Fixed| Varied
Parameter Value| Range Comments
Homogeneous or
Non-homogeneous
Model Poisson Model
No. of Fracture
Sets, N f 1 2
0, 500,
Cohesion, Cj 1000 | 1000, 1500
Friction 10°, 20°,
Angle, ¢, 30° | 30°,40°
Tenstle Cut- 0,10
off Stress, O, 0 50, 100
Orientation
Concentration 10, 20,
Factor, x 20 30, 40
Mean Fracture
Orientation 20°, 30°,
(Dip Angle), o 40° | 40°,50°
Mean Trace 4,6,
Length, m, 6 8,10
Unit Weight of
Rock Mass, ¥ 2200 Fixed

or the minimum volume among rock blocks which have the same sliding
angle. We already know that the sliding angle is the minimum dip angle
which becomes one of the faces of the fully persistent rock block, and on
which the rock block is sliding down. We expect that choosing either the
maximum or the minimum volume does not affect the overall properties of
the data (e.g., randomness of the number of occurrences of kinematically
admissible rock blocks and mean sliding angle. etc) since, even though
different in shapes due to path variations, the fracture paths which retain the
same sliding angle have essentially the same properties. Fig. 6-12 is a plot of
sliding angle v.s. volume of rock blocks for case 1 with parameter state, C; =
1000 (recall that 50 simulations are run per parameter state). Fig. 6-13 is a
simplification of the data in Fig. 6-12, in that only the maximum rock block
volume is considered.
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Table 6-2 Investigated Cases

Case |Model |N;| C; ; O, X o m,
Case 1| H.P. | 1 | Varied | Fixed | Fixed | Fixed | Fixed | Fixed
Case2| H.P. | 1 | Fixed | Varied | Fixed | Fixed | Fixed | Fixed
Case 3| H.P. | 1 | Fixed | Fixed | Varied | Fixed | Fixed | Fixed
Case4| H.P. | 1 | Fixed | Fixed | Fixed | Varied | Fixed | Fixed
Case 5| H.P. | 1 | Fixed | Fixed | Fixed | Fixed | Varied | Fixed
Case 6| H.P. | 1 | Fixed | Fixed { Fixed | Fixed | Fixed | Varied
Case 7| H.P. | 2 | Fixed | Fixed | Fixed | Fixed | Fixed | Fixed
Case 8| N.P. | 1 | Fixed | Fixed | Fixed | Fixed | Fixed | Fixed

2. Check the randomness of the number of occurrences of kinematically
admissible rock blocks, or kinematic mechanisms. If the kinematically
admissible rock blocks occur randomly, i.e., if the number of kinematic
mechanisms follow the Poisson distribution during simulations, the
corresponding probability of failure, due to the Poisson process properties,
can be calculated easily. In the following, we will discuss the procedure to
derive the probability of failure in detail. To check the randomness, a y-test
is employed. The resulting goodness-of-fit is satisfied at the 10% significance
level, see Fig. 6-14. One can, therefore, assume that, during simulations, the
kinematically admissible rock blocks occur randomly.

3. Calculate mean (m,,|,) and standard deviation (G,,,) of the sliding angle for a
given volume of rock block. The mean sliding angle can be estimated by
regression, whereas the standard deviation is calculated from the moving
average of the data with respect to the estimated mean sliding angle. We do
this because the standard deviation derived from the moving average gives a
relatively constant value and, therefore, only one variable, ie., (m, ), is
necessary to calculate the probability of failure for a given volume of rock
block. A window width of 10 volume units is used in our case. Fig. 6-15
shows the curve obtained from nonlinear regression which is used to find the
mean sliding angle for a given volume of rock block.

4. Calculate the number (or the frequency) of kinematically admissible rock
blocks, A(V), as a function of the volume of rock blocks. In our case, either
an Exponential or a Gamma distribution can be fitted to the data. However, to
prevent the fitted frequencies from approaching zero as the volume of rock
block increases, and thus to make it possible to calculate the probability of
failure of a very large volume, a Gamma distribution is used. Fig. 6-16 is an
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example of the fitting the data with the Gamma distribution to find the
frequency of kinematic mechanisms.

5. To include the cohesion effects on a sliding face of the rock block, one needs
to calculate the contact lengths for given volumes of rock blocks. In our case,
since the contact lengths vary widely and fluctuate inconsistently for a given
volume of rock block, they cannot be estimated directly, nor precisely (see,
Fig. 6-17). However, one can derive a distribution form for the contact length
indirectly as follows:

¢ Assume a reference point (see, Fig. 6-17). This reference point can be
connected with any of the data points in Fig. 6-17. The reference point,
however, does not connect with every data point, e.g., if the volume is
too small, one can ignore the corresponding data points since they do
not affect the overall relationship between the contact length and the
volume of rock block. This is evident when we consider the following
steps where the relationship between length and volume is represented
by a distribution form.

e Calculate slopes of lines which connect the reference point and the data
points. Also, calculate the maximum and the minimum slope (Fig.
6-17).

e A Beta distribution is, then, fitted to the slope data to estimate the
distribution of the slopes for given volume of rock blocks, Fig. 6-18. In
Fig. 6-18, € is calculated as:

E=0,, —O 6.7)

where, o, is the maximum slope found in Fig. 6-17, and « is a

currently considered slope. Fitting the data to a Beta distribution is
performed with the method of moments (the first and the second
moment are used to find the parameters of a Beta distribution).

e Finally, relate the contact length and the volume of rock block since
one of the points (i.e., the reference point) and the distribution of the
slopes are now known.

Assuming the slope angle is distributed normally for a given volume of rock block,
the probability of failure for a given volume of rock block, Py, is calculated as:
Py, =P(la>a,}IV)

=1-P({la<o,llV)

=1 _J'a"f’___l__exp [- 12 ( (lt—mmh,)2 Jdo (6.8)
el 02 RGG.V 20(1[\'
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where, @, is a critical angle for which the safety factor, S. F., becomes 1. m,|, and G,

are the mean and the standard deviation of the sliding angle for a given volume of rock

block, respectively.

From Step 4 above and from Eq. (6.8), one can estimate the rate of failure
occurrences (i.e., the expected number of kinetically unstable rock blocks) within any
volume interval; specifically, the rate of failure occurrences within a volume interval

[V,, V,] can be calculated as:

E [ No. Failuresin (V,, V,)]= j "2y (v) P,,dV (6.9)
i
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where. A(V) is the frequency of kinematically admissible rock blocks derived in Step 4 in
the above. Finally, since the occurrences of kinematically admissible rock blocks are
random (see, Step 2 in the above), the probability of failure within a volume interval

[V,, V.]is estimated from the following equation:

Pf(VI—VZ) =1- e—E[No.Failuresin(Vl, VZ)] (6.10)

Up to now, we derived the equation for the probability of failure for a given volume
of rock block and, from this, obtained the probability of failure as well as the rate of failure
occurrences within a volume interval. Using these relations, one can now investigate the
influence of various parameters. We begin with the cohesion effect. To investigate the
cohesion effect, the other mechanical and geometric parameters are set constant. As can be
imagined, if the cohesion of a fracture is increased from 0 to 1500, the probatility of failure
for a given volume of rock block significantly decreases, see Fig. 6-19. Note that, when the
cohesion has no influence on overall behavior (i.e., C; = 0), the probability of failure will be
a monotonically decreasing function, whereas when the cohesion is included in estimating
probabilities, one can define a critical or maximum probability of failure which is a
function of the volume of rock block. This is an expected result since the slope has a fixed
height. It can also explained when one considers the limit state equilibrium. The safety
factor for cases affected by friction only will be a function of the sliding angle which is
generally inversely proportional to the volume of rock block (see, Fig. 6-15). However, if
the cohesion is included in the analysis, the cohesion and the contact length along which
cohesion acts will influence the stability. In other words, when the volume is small, the
cohesional resistance is more significant than the frictional resistance, while the frictional
resistance is dominating the overall behavior of the rock block as the volume of rock block
increases. This is because the unit weight of rock mass, v, is a relatively large value (2200

units) such that, as the volume is increased, its effect on overall behavior (i.e., frictional
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resistance) greatly increases. One can, therefore, define the critical volume or the
maximum probability of failure at the junction of these two effects. Another fact to notice
is that, as cohesion increases, the critical volume at which the maximum probability of

failure occurs also increases.

The rate of failure occurrences in a volume interval, Eq. (6.9), is plotted in Fig. 6-20,
where the interval is set to 1 unit. In Fig. 6-20, one cannot define a maximum rate of failure
occurrences with cohesion value 100 (i.e., the maximum rate occurs at 0 volume). This is
because the rate of change of the number of kinematic mechanisms in Fig. 6-16 is more
rapid than the rate of change of the probability of failure for given small volumes in Fig.

6-19. The probability of failure in a volume interval ( 1 unit ) is depicted in Fig. 6-21.

6.6.2 Case 2: Variation of Friction Angle

When the friction angle increases from 10° to 40°, dramatic changes in overall
behavior of the probabilities are induced; specifically the probability of failure for a given
volume of rock block is diminished as the friction angle increases, Fig. 6-22. However, the
critical volume at which the maximum probability of failure occurs decreases as the friction
angle is increased. This is different from the effect of varying cohesion and it can be
explained by the fact that, when the friction angle is small, the resisting force due to the
friction angle together with the volume (actually, weight) is relatively less significant than
the resisting force due to cohesion; whereas, if the friction angle increases, the frictional
resistance increases rapidly (recall that the unit weight of rock mass, ¥, is a relatively large
value, 2200) and it will dominate the overall probabilities. The critical volume is, therefore,

decreased.

The rate of failure occurrences and the probability of failure in a volume interval (1
unit) are illustrated in Figs. 6-23 and 6-24, respectively. These two figures clearly show the

critical volume interval at which the maximum rate and the maximum probability of failure
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Figure 6-21: P, in a Volume Interval: Variation of Cohesion

occur. In our slope geometry case, the critical volume interval is roughly in 4 to 5 volume

units.

6.6.3 Case 3: Variation of Tensile Cut-off Stress

The tensile cut-off stress is varied between 0 to 100. The probability of failure for a
given volume of rock block decreases slightly, Fig. 6-25, as one goes from 0 to 100. One
cannot, however, observe any significant changes in overall behavior of the probabilities.
This means that, when cohesion is relatively large (i.e., C ;= 1000) and the maximum tensile
cut-off stress is less than one tenth of the cohesion value, the resisting force due to the
tensile cut-off stress does not dominate the resisting forces and, therefore, the probability of

failure.
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6.6.4 Case 4: Variation of Concentration Factor of Orientation

Various orientation (dip angle in two dimensional slope stability analysis) models are
used when generating a fracture patten. In our case, we have used the Von Mises
distribution with two parameters; one is the mean orientation which is set to 40°, the other
is the concentration factor x which determines the concentration around the mean
orientation. If k is relatively high, the fracture pattern is concentrated (peaked) around the
mean orientation; if not, the pattern is dispersed about the mean orientaion and many of
kinematically admissible rock blocks can be generated. In the parametric study,
concentration factors ranging from 10 up to 40 have been used. Also, to include the

influence of cohesion, two different cohesion values are compared.

First, when the cohesion value is relatively large (Cj = 1000), the probability of
failure for a given volume of rock block increases with x up to x = 20 because the mean
sliding angle becomes steep (recall the mean sliding angle is different from the mean
orientation in that the mean sliding angle is the minimum dip angle which constitutes the
sliding face of a rock block), see Fig. 6-26. However, as the concentration factor is further
increased, the mean sliding angle as well as the contact length of the sliding face increase.
(Fig. 6-26). At this point, the resisting force due to cohesion effect dominates the overall
behavior and, correspondingly, the probability of failure for a given volume of rock block
decreases. Eventually, when the fractures becomes parallel (very high x), the probability of
failure for a given volume of rock block will be zero, Fig. 6-27. Second, if the cohesion
value is relatively small (C; = 100), the probability of failure for a given volume of rock
block gradually increases and finally becomes 1 as the pattem becomes parallel, Fig. 6-28.
This is because the cohesional resistance is not so significant compared with the frictional
resistance of the rock block. From the comparison of these two cases, one can conclude
that, when the cohesion is large, the probability of failure for a given volume of rock block

increases up to a favorable concentration factor (in our case, k = 20) where the contact
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length (i.e., the cohesion effect) does not contribute to the overall behavior. However, as
the fractures approach a parallel pattern (in our case, when x is 30 or more), the contact
lengths are getting longer and finally all the blocks have triangular shapes where the faces
of a triangle are composed of two slope boundaries (slope face and surface) and a contact
face, Fig. 6-26. It means that the resisting force due to cohesion becomes significant and
the probability of failure for a given volume of rock block rapidly decreases and finally
becomes zero. When the cohesion effect is negligible, the probability of failure for a given
volume of rock block generally increases and finally becomes 1 as the pattemn becomes
parallel. One more fact to notice is that, when the pattern is parallel, a maximum limit
volume exists since our model of a slope has a toe; in the present simulations, the maximum

is 11 volume units.

surface

K increase

contact face

....................... detaching face

Figure 6-26: Typical Fracture Pattern with Increasing x

The rate of failure occurrences as well as the probability of failure in a volume
interval have the same tendencies as the probability of failure for a given volume of rock

block.
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Figure 6-28: P,Given Volume of Rock Block: Variation of
Concentration Factor with Cohesion = 100
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6.6.5 Case 5: Variation of Mean Orientation

When the mean orientation (dip angle) of the fractures is changed from 20° to 50°,
the overall probability of failure increases. However, since the slope angle, 0, is set to 50°
(see Fig. 6-6), the probability of failure for a given volume of rock block sharply decreases
if the mean orientation (dip angle) is 50° and if the volume is increased, see Fig. 6-29. This
can be explained by the fact that, for a mean orientation 50°, a chance to construct a fully
persistent rock block is rarely possible except for small volumes. Figs. 6-30 and 6-31 also

show the rate of failure occurrences and the probability of failure in a volume interval.

6.6.6 Case 6: Variation of Mean Trace Length

Using the exponential trace length distribution model and varying the mean trace
length from 4 to 10 units, one can find the critical volume and the maximum probability of
failure, Fig. 6-32. However, when the mean trace length is less than 4 units, one cannot find
any trend since there is little chance to construct a fully persistent rock block. As can be
foreseen, when the mean trace length is increased, the probability of failure for a given
volume of rock block increases since the mean sliding angle is getting steeper as the mean
trace length is increased, see Fig. 6-33. The main reason for the increase in the fitted mean
sliding angle is that, since the fracture patterns with different trace length cases are
generated with the same random number sequences, the blocks made with large mean trace
length include the blocks which were previously made with small mean trace length, see
Fig. 6-33. As a result, the fitted mean sliding angle has a possibility to be steeper as the
mean trace length is increased. Also, the same behavior occurs both in the rate of failure

occurrences and in the probability of failure in a volume interval.
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Figure 6-29: P,Given Volume of Rock Block: Variation of
Mean Orientation
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Figure 6-31: P,in a Volume Interval: Variation of Mean Orientation
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MEAN TRACE LENGTH = 4
--------------------- MEAN TRACE LENGTH = 10
SLIDING FACE WHEN MEAN TRACE LENGTH = 4

Figure 6-33: Changes of Mean Sliding Angle:
Variation of Mean Trace Length

6.6.7 Case 7: Variation of Number of Fracture Sets

To study the fracture set effect, we divide the fractures into two sets. Set 1 is a set of
25 fractures with mean orientation of 40°; set 2 is a set of 25 fractures with mean
orientations ranging from 20° to 130°. Considering the absolutely very low probabilities of
failure in Fig. 6-35, one can state that the probability of failure for a given volume of rock
block is not greatly influenced by the second set when C; = 1000. This is quite probable
since, in the case of 20°, the dip angle on which the rock block is sliding down is dominated
by set 2 orientation (i.e., the mean sliding angle decreases, see Fig. 6-34(a)), and therefore,
the overall probability of failure is diminished. Also, in the case of set 2 of 40°,
combination of two sets determines the sliding dip angle (i.e., the fitted mean sliding angle
becomes the steepest if the mean orientations of two sets are equal to 40°, Fig. 6-34(b)) and

the probability of failure increases (recall that the sliding dip angle is determined as the
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minimum dip angle among fractures which constitute the faces of a rock block). However,
in the remaining cases, the dominating dip angle on which the block is sliding down is
governed by set 1 (i.e., mean sliding angle = 40°) and no significant changes in

probabilities are expected, Fig. 6-34(c).

When it comes to the rate of failure occurrences and the probability of failure in a
volume interval (Figs. 6-36 and 6-3/, respectively), the above mentioned two fracture set
cases, i.e., 20° and 40°, as well as the case with 130° have a significant influence on the
overall behavior. We may deduce the reason for these results as follows; First, when the
mean orientations of two sets are orthogonal (i.e., 40° and 130°), more chances to make
fully persistent blocks are expected in small volumes where the mean trace length was fixed
at 6 units; however, as the volume is increased, these chances to construct the fully
persistent blocks are rarely possible. Second, when the mean orientations of the two sets are
20° and 40°, one has the greatest possibility to construct a fully persistent block except in
the small volume region where the orthogonal sets (see above) have greatest probabilities of
failure. One can explain this by considering the connectivity matrix concept. That is, if
fractures intersect the slope face at many points, more chances to construct the fully
persistent rock blocks are possible, and if the mean orientation of fracture set is relatively
flat, it will intersect the slope face at many points. Finally, for the same reason as above,
when the mean orientations of two sets are equal and are set to 40°, one also has much more

chances to make blocks except the second case.

6.6.8 Case 8: Variation of Midpoint Model of Fractures

Up to now, we have utilized the homogeneous Poisson process model when
generating the midpoints of fractures. For modelling non-homogeneous Poisson processes,
we will employ the Poisson clustering model (rather than the Cox process model) in which

the number of seeds (i.e., parents) and the number of daughters are predetermined. In our
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(a)

(b)

(c)

MEAN ORIENTATION =40 °

Figure 6-34: Typical Fracture Pattern with Two Sets of Fractures
(a) = 20°, 40°
(b) o = 40°, 40°
(c) o= 130°, 40°
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case, wc will use 3 midpoints as seeds, and the remaining 47 midpoints as daughter

fractures. To compare the result, we also use the homogeneous Poisson process model in

which 50 fractures are generated radomly over the slope.

The probability of failure for a given volume of rock block increases in the case of

non-homogeneous Poisson process model compared to the case of homogeneous Poisson

process model since the fractures are clustered around the parent, and therefore, make it

easier to construct a fully persistent block. Fig. 6-38 shows the differences in the probability

of failure between the non-homogeneous and the homogeneous Poisson process model.

Also shown in Figs. 6-39 and 6-40 are the rate of failure occurrences and the probability of

failure in a volume interval, respectively.
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Figure 6-40: P in a Volume Interval: Variation of
Midpoint Model of Fractures

6.7 Discussion

In this chapter, we investigated blocky rock mass behavior by using stochastically
generated fracture patterns and by employing a topological concept. At present, the model
is limited to fully persistent fractures, but one can vary mechanical properties of fratures
such as cohesion, friction angle and tensile cut-off stress. Also, geometric properties such as
mean orientation, concentration factor, mean trace length, number of fracture sets and the
midpoint model of fractures can be varied. The effect of varying these parameters, which
amounts to a sensitivity study, showed that the number of kinematically admissible rock
blocks was largely controlled by the number of effective fractures which intersect the slope

face, and that the most important parameter in slope stability analysis was the cohesion as
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well as the friction angle of a contact face. These two parameters influenced the critical
volume (or the maximum probability of failure). Less importantly, the orientation
distribution (i.e., mean orientation and concentration factor) affected the overall behavior of
the slope stability. However, in our cases, the tensile cut-off stress did not dominate the

overall probabilities.

The present limitation of the model in addition to the assumption of persistent
fractures is that Program TRACESIM can detect only up to 10 different fractures which
become the faces of a rock block. This needs to be modified if the pattern becomes
complicated (i.e., more than 10 fracture paths in a rock block). The limitation can be
overcome by expanding the connectivity matrix and by adding iteration loops into program
TRACESIM. Future research will also make it possible to consider different slope shapes
such as slopes with benches and with tension crack developed at the slope surface.
Meanwhile, modelling of non-persistent failure requires representation of fracture

coalescence.




-166-

Chapter 7

SUMMARY, CONCLUSIONS AND OUTLOOK

The main objective of this research was to develop a model and simulation procedure
for rock fractures that can reflect the sequential mechanism of fracture formation and, thus,

includes dependencies and spatial nonhomogeneities that are often seen in rock outcrops.

Modelling of sequential fracture sets has been accomplished using the hierarchical

fracture geometry model. Specifically, the main features of the model are :

1. The spatial variation of trace density is represented by an inhomogeneous
Poisson point process or by a doubly stochastic ( Cox ) point process.

2. A new method, based on maximum likelihood, has been developed for the
unbiased estimation of trace length distribution.

3. When several trace sets are present, these sets are analyzed sequentially,
according to a hierarchical order. Each set is represented by a conditional
stochastic process, conditioning being with regard to the lower-order sets.

4. Two correlation measure methods, the line-kemel function method and the
nearest neighbor distance method, have been used to account for the
dependencies among fracture sets.

5. Methods from multivariate point processes (Diggle, 1983) have been adapted
to the estimation and validation of multivariate fiber processes.

6. A modified termination probability was developed to describe the complex
pattern of fracture intersections.

The hierarchical model has been applied to two cases in which detailed fracture
patterns have been obtained, one with a single set and one with two sets. The validity of the
model was checked by visual comparison between model prediction and mapped pattern
and most importantly, by statistical checks such as the second-moment analyses and the

Monte Carlo test. A satisfactory fit of the predicted pattern was obtained in both cases.

The hierarchical fracture model has been combined with a topological model to
investigate the behavior of a blocky rock mass. The application of the combined

hierarchical and topological model proceeds as follows;
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1. A stochastic fracture pattem is generated with the hierarchical fracture
geometry model.

2. Kinematic as well as kinetic analyses on fully persistent rock blocks are
conducted.

3. Finally, using sensitivity analyses, the mechanical and geometric fracture
parameters which have the greatest influence are determined.

Slope stability analysis using a fully persistent block model shows that the number of
effective fractures which intersect the slope face are the key element for constructing a fully
persistent blocky rock mass. Also, in most cases, we could define the critical volume which

gives the maximum probability of failure for a given rock block volume.

So far the hierarchical model has been applied to two dimensions only, i.e., to
fracture traces in a plane. Further work on the stochastic fracture geometry model will have
to be focused on the three dimensional expansion of the existing model. One of the
possible three dimensional models can be based on the homogeneous, isotropic Poisson
RACS (RAndom Closed Set) process. This idealized model can be expanded to a three
dimensional hierarchical model. Clearly, this requires establishing relationships between
two dimensional trace length distributions and three dimensional fracture size distributions

as well as the consideration of three dimensional orientation distributions.

Conceming topological modelling of a rock mass, two issues will have to be
considered in the future work; one is the implementation of a more realistic mechanical
model for rock fracturing, notably the mechanism of coalescence of non persistent
fractures; the other is an expansion of the two dimensional slope stability problem into a

three dimensional one.

It should be noted that, while this research has concentrated on an application to rock
slope stability, the basis has been laid for a much broader application. The hierarchical
fracture model can be used in any problem involving fractured rock masses. The

topological model is similarly useful in other rock mass problem such as flow through
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fractured rock masses. Most importantly, by expanding the mechanical aspects to include
coalescence of existing fractures, the combined hierarchical and topoiogical model can be
used in any problem involving solid bodies with discontinuities. Notably, it will be
possible to model fractured (cracked) concrete structures. On the other hand, a better

understanding of basic small and large scale geologic processes will also be possible.
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Appendix A
TESTS FOR RANDOMNESS

Various test methods exist for checking Complete Spatial Randomness. The
approaches can be divided into two groups ; one is based on the quadrat count method,
while the other uses a distance measure schemes. We will mainly discuss the latter since the

quadrat count method, in some cases, cannot satisfactorily describe the point pattern.

A.l Distance-based [ Plotless ] Tests

We will discuss the distance-based test assuming the Poisson point process as a nuil
hypothesis H,,. For later use, we define various distances which have their own
characteristics. Define an event as a real point pattern such as a tree or mid point of a trace
and a point as an artificial point selected randomly. We denote a event-event distance by W,
a point-nearest event distance by X, a point-second nearest event by X,, a distance from an
event selected using a random point to the nearest event on a same half plane by Y and,
lastly, a distance from an event selected using a random point to the nearest event on the
other half plane by Z ( see Fig A-1 for details ). Here we assume m as the total number of

events and p as the population intensity. The summation ( 3, ) in the following equations

isfori=1,.m.

Clark and Evans ( 1954 ) developed a test based on the inter-event distances.

Assuming a point population intensity p in a region, the mean observed distance can be

represented as

— w
=L
m

A1)

The mean distance which would be expected if the pattern is f~llowing CSR,




-170-

Key @ Arandomly chosen plant
x Other piants
O A rgndomiy chosen pont
4,8,C,0.€ Plont locotions
W, X, v, Nearest-neighbour distances

Figure A-1: Various Nearest-neighbor Measurements

w,=—1_ 42)
2Vp
The ratio
W,
hC = VE (A .3)

can be used as a measure of the degree of departure from CSR. In CSR, A = 1, under

conditions of maximum agregation, /i becomes 0.

Hopkins ( 1954 ) used X and W distances. His test requires complete enumeration of

events in the study region. Under CSR,

Y X:

ZWZ ~ Fipmom A4)

hy=

Here, relatively small or large values of h, indicate a regular or aggregated pattem,

respectively.
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Pielou ( 1959 ) used an index of non-randomness by calculating

.3 X2
hp=np%_ - N(l,%) (A.5)

In an aggregated population, one would expect a large value of X?, giving a higher value of

hp. Mountford ( 1961 ) considered the sampling errors and corrected ielou’s index.

Holgate ( 1965 ) adopted nearest and second nearest distance X, X, and suggested a

ratio test, based on the sample mean of the ratio

_ X 1 1
1’;{0—‘2(}2)]/”1 N(E,m) (A.6)

We reject the H,, if the observed value of Ay, differs from its expectation by more than k

times its sampling standard deviation, where k is the appropriate percentage point of the

normal distribution. If, instead of the mean of ratios, the ratio of means is considered

X?
> £

e ) ~ Fomom (A.7)

hH0=(

These test methods are efficient whether a pattern is distributed regularly or not. Here, a

regularity means that the points are evenly distributed over a region.
Eberhardt ( 1967 ) considered the moment ratio which is easy to calculate

X2
h5=[—§—§§))—]5 = (coefficient of variation)? + 1= (n EZX)Z

(AB)

where, /i increases with increasing tendency for aggregation. Since the sampling
distributions of the ratio have not been worked out, an exact test of deviation from CSR is

not available. But Eqn (A.8) doesn’t require a knowledge of density.

Besag & Gleaves ( 1973 ) introduced a T-square test. This test aims to preserve the
intuitive appeal of Hopkins’ ( 1954 ) test, and it proved more successful than Holgate’s

(1965) test. It consistsof the following statistic
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1 2X? 1 1
"BG'_;Z2X2+ZZ - N(E’ 12m)
2y x2 ‘
hpgy= Zzz ~ Fypom (A9)
)y

Both tests are comparatively powerful against regular or aggregated alternatives since
relatively small or large values of hg;, or hg;, indicate a regular or aggregated pattem,
respectively. Thus these tests can be used as three-way characterization of spatial point

pattern as regular, random or aggregated corresponding to a small, non-significant or large

value for /1,5, and hgg,.

Diggle, et al. ( 1976 ) suggested CSR test with X and Z distance. Their statistic is as

follows,

hop=3, 21 Min@X2.Z))/2XC4Z))/m ~ NG ) (4.10)

It only detects nonrandomness and cannot distinguish between aggregation and regularity.

Cox & Lewis ( 1976 ) used the conditioned distance ratio method. They considered X
and W distance and collected pairs m; < m for which W, <X, Transforming these two

distances into r,, they showed for regularity,

M=min (r,,....,,,)) ~ Beta(l,m,) (A.11)
and for aggregation,
>r 1 1
R=%=_ ~ N(z,—— .
ny, (2 12m0) (4.12)

Diggle ( 1977 ) suggested a generalized likelihood ratio test. This test is based on the
method of Besag & Gleaves ( 1973 ) when he considered the difference between clustering

and random heterogeneity in the environment.
hp=48m{mlog [(Y 2X?+Z%)/m] - Y log (2X?+22)}/(13m+1)
~ X (A.13)
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It can be used as four-way characterization of spatial point pattemns as regular, random-
homogeneous, random-heterogeneous, or aggregated. This test can be used to test

heterogeneity if the test of Besag & Gleaves ( 1973 ) doesn’t have a satisfactory result.

Ripley ( 1977 ) considered an edge-corrected second-moment as a test based on the
idea of Besag ( 1977 ). The second moment is

k(=m?Y k(x,y) (4.14)

where k(x,y)~' is the proportion of the circumference of the circle centered x passing

through y. Besag ( 1977 ) suggested the plot of the stabilizing function L(t)=\/l\c(t) /st

and L =sup|L(t)~t] as atest statistic for CSR.

Brown & Rothery ( 1978 ) considered three statistics,

X2
D:;_.
m

s=—L_¥ (x2-Dy/p?

m-1

G=([] X" /D (4.15)

here, D is the mean squared distance, S is the square of the coefficient of variation of the
squared nearest neighbor distances. Small values indicate local regularity, for complete
regularity S = 0. S is an equivalent form of the Eberhardt ( 1967 ) test except for the
squared distances. G is the ratio of the geometric mean to the arithmetic mean of the
squared distances. It lies in the interval (0, 1) and large values of G indicate local
regularity. When points are chosen at random, the distribution of S and G depend on the

number of points and on the shape, but not the size, of the area.

Hines & Hines ( 1979 ) modified the Eberhardt ( 1967 ) test and adapted it to T-
square sampling,
__2mZ (2X*+2Z%)
T 3 [XV2+Z})?

i (A.16)

They proved h,, is powerful when detecting aggregation.
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Byth & Ripley ( 1980 ) used a semi-systematic sampling scheme as a modification of

the Hopkins® ( 1954 ) test. Fig A-2 shows the schematic sampling of their procedure. Set

©

e i b TP |

Figure A-2: Semisystematic Sampling Scheme of Byth & Ripley ( 1980 )
up a grid of 2m points. From m sampling points, measure the squared distance to nearest
event, Xf,i =1,...,m with remaining points. Layout a small plot of a size which would
contain about five events on average and count the events in each plot. Select m events at

random from those enumerated and measure the squared distance W,.z. Thus,
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X"Z
hpmi==—— ~ Famom
2w |
1 X2 1 1
hBRZ_aZ Gazwz) N(E’m) (A.17)

and use these statistic as tests of CSR. They suggested /g, for suspecting clustered pattern

and hpy, for regular alternatives.

Heinrich ( 1984, 1986 ) modified the Ripley’s ( 1977 ) second moment test and
included the variance, assuming the normally distributed random variable of i{(t). For
testing the null hypothesis with given significance level o, he suggested
palK(t)-nr]

h”E( tLp.a )=
IN2r(1+2re2p)

(A.18)

where a is a length of a squared area.

A.2 Quadrat Count Tests

It is well known that the quadrat count test is a weak test compared with the distance-
based test since (1) the size of the quadrat has effect on the results, (2) several different

patterns may have same test results and (3) the counts lack spatial autocnrrelations.

To test CSR with quadrat count method, we assume that the data are made up of

independent counts n,,...,n,, in m quadrats, each with area B, and with the mean of counts is

n
Fisher. et al. ( 1922 ) used the sample variance to mean ratio or index of dispersion as
a test
I=Z (n=1m)/{(m=1)i) (A.19)
=}
Under CSR,
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(m=-I ~ %_, (A.20)
where, usually m > 6 and pB > 1. Significantly large or small values indicate aggregate or

regular pattern, respectively.

Mead ( 19974 ) showed various alternative tests based on the hierarchical

classification of quadrats. Upton & Fingleton ( 1985 ) described the use of quadrat count

test in detail.

A.3 Discussion

We have discussed many tests which can be used to test CSR. To find the most
efficient test set is not simple because each test has its own merit. In general, one needs to
include edge effects. For this reason, we advocate the usz of Ripley’s ( 1977 ) test. In this
type of test, any shape of rcgion can be used and no correction for edge effects is required if

we use the Monte-Curlo simulation suggested by Bamard ( 1963 ).

Since the CSR test can only be used to check the null hypothesis, we need an

alternative model ( i.e., non-Poisson point model ) if the null hypothesis is not satisfied.
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Appendix B
METHODS FOR EDGE-CORRECTION

When we calculate the second moment of given data points, we need to consider
edge effects. Here, we discuss two popular methods which can be used to correct the edge

effects.

B.1 Edge-correction with the Graphical Method

The original idea for this correction is Ripley’s (1977) ; it was simplified by Ohssr &
Stovan (1981) and by Diggle (1983). One definition of the second moment, K(t), is

K()=n2AY k(x,.%,) (B.1)

where. n is the number of events in a region A and the sum is over all pairs (x,.x,) of events

which are apart up to distance ¢. k(x,.x,) is a correction factor for edge effects. Consider the

circle centered on x, passing through x,, see Fig. B-1. If this circle is completely within

region A then k = 1. Otherwise, 1/k(x,.x,) is the proportion of the circumference of the

circle within region.

Particularly, when a region A is rectangle with side @ and b ( a < b ), Ohser & Stoyan
(1981). considering the whole region, classified the distance measure as belonging to one of
four cases, whereas, Diggle (1983), considering practical uses, grouped the distance
measure in two cases. Ripley (1985) expanded these cases to irregular shaped regions and

suggested a generalized graphical method.
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Figure B-1: Graphical Method for Edge-correction

B.2 Edge-correction by Toroidal Shift Method

Original toroidal shifting (Lotwick & Silverman, 1982) was used when evaluating an
independence test of bivariate point processes. We can use this idea when we calculate the
second moment. Assume that the region of interest is rectangle with sidesaand b (a < b).
Wrap the region onto a torus both in the x- and y-direction. Thus there are no edges.

Calculate distance between two events as follows where we assume x(x,,X,), ¥(¥,.¥,)

r )=V =y O P+ (=) ) (B.2)

where,
fus)y=min(|s{h-|s]) (B.3)

and calculate the second moment, K(t), with derived distance r. Here, K(t) is unbiased for

allr<t,=minta,h)/2.
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Appendix C
USER MANUAL AND LIST FOR "POINT" AND "FIBER"

C.1 Introduction

For the analysis of mapped fracture pattemns, two different programs are needed :

e POINT : a program with which mid point behavior of mapped patterns and
various point processes are analyzed.

» FIBER : a program which analyzes trace length hehavior using a hierarchical
concept.

In addition. a mathematical subroutine package called IMSL is used when generating
random numbers and simulating basic distribution functions. Calculation of trace length
distributions is done with program TDIST. Lastly, simulations of trace patterns using a
termination probability are performed with program TERMN. These programs are installed
both on the JVN super computer CYBER 205 and on the Micro-VAX I at MIT. All
programs are based on FORTRAN 77.

C.2 Input Manual for Program POINT

Program POINT generates pseudo-random numbers, and from these, calculates inter-
event and nearest-neighbor distances. It also computes second-moments of mapped data
and simulation patterns. Free-format is used for all input data except for the title. Except
for a default input data file (unit 5), an additional input data file is required when dealing
with an inhomogeneous Poisson point process modelling and a doubly stochastic process

modelling. In this case, the input file unit is 8.
1. TITLE (20A4)

2. IOPTN : analysis options
| : Inter-event distance analysis

2 : Nearest-neighbor distance analysis
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:Bothl1 &2

W

: Second-moment analysis
5 : Inhomogeneous Poisson point process model
6 : Marked point process model

7 : Doubly stochastic ( Cox ) point process model

3. If IOPTN = 7, then read ANGLE ( in degrees ). If not, skip, where ANGLE is
a direction with which the angular second-moment is calculated.

4. NOPNT, NOSIM, NSTEP, IMAPP
* NOPNT : No. of points generated

e NOSIM : No. of simulations including analysis of mapped pattern

¢ NSTEP : No. of calculation steps when evaluating the distance-based
measurement

e IMAPP = 0 : consider simulations only when checking validity of a
model

e IMAPP = 1 : consider simulations and mapped pattern when checking
validity of a model

5. DSTEP : distance step length
6. KXCLS, KYCLS : No. of divisions in X- and Y-direction, respectively
7. XBOT, XTOP, YBOT, YTOP : boundary coordinates for X- and Y-direction

8. If IOPTN = 5, read values of curve-fitting parameter and options
XVALIL, XVAL2, YVALI, YVAL2, CONST : parameters

JOPTN, IKERN
¢ JOPTN : analysis options

1 : inter-event distance analysis
2 : nearest-neighbor distance analysis

3 : second-moment analysis

¢ [KERN
1 : fixed kemnel function measure

2 : linear kemel function measure

SIGMA : standard deviation of a fixed kemel function (input unit = 8)
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COORD(IOPNT,1) : X-coord. ; COORD(IOPNT,2) : Y-coord. (input unit =
8)

where, JIOPNT = 1 through NOPNT

9.1f IOPTN = 6, read IDUMM, COORD(IOPNT,1), COORDJOPNT,2),
TRACE(IOPNT)

e IDUMM : dummy value

e COORD(IOPNT,1) : X-coord.
e COORD(IOPNT,2) : Y-coord.
e TRACE(IOPNT) : trace length

10. If IOPTN = 7, read option NOJOB and coefficients
* NOJOB

NOJOB = 1 : Cox process with bivariate normal distribution function

NOJOB = 2 : simulation of Cox process using angular second-moment
analysis

NOIJOB = 3 : calculation of angular second-moment
e XCOF2, YCOF2, FMULT, XVARI], YVARI, IPRIN (input unit = 8)
XCOF2 : X-dir. spectral density coefficient
YCOF?2 : Y-dir. spectral density coefficient
XVARI, YVARI : standard deviation tor X- and Y-direction
IPRIN = 0 : no printout ; = 1 print the resuits
¢ DUMMY, DUMM]I, IDUMM : dummy values
o COORD(IOPNT,1) : X-coord.
COORD(IOPNT,2) : Y-coord.

11. If IMAPP # 0 and IOPTN < 3, read coordinates of mapped pattern ; If not
skip

COORD(IOPNT,1) : X-coord. ; COORD(IOPNT,2) : Y-coord.
[IOPNT = | through NOPNT
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C.3 Input Manual for Program FIBER

Program FIBER evaluates the hierarchical fiber ( Line - segment ) process which is a

realization of the given mapped pattern.

L. TITLE (20A4)
2. NOPNT, NOFPT, NOLPT, NOSIM. NSTEP, DSTEP, SIGMA, TSTEP

¢ NOPNT : No. of total fibers ( or mid points )

* NOFPT : No. of fibers in the 1st set

¢ NOLPT : No. of fibers in the 2nd set

e NOSIM : No. of simulations iterated

® NSTEP : No. of steps when calculating the statisti~

e DSTEP : distance step size

e SIGMA : standard deviation of the line-kernel function
e TSTEP : unit of segment in a fiber

3. XBOT, XRANG, YBOT, YRANG
e XBOT : X-coord. of starting boundary

e XRANG : range of X-coord.
¢ YBOT : Y-coord. of starting boundary
¢ YRANG : range of Y-coord.

4. IOPTN, JOPTN, LOPTN

IOPTN =0 : do not enter the point process

IOPTN = 1 : bivariate kernel function method

IOPTN = 2 : independence test

IOPTN = 3 : orientation correlation option

IOPTN = 4 : MLE for orientation data

JOPTN =0 : do not enter the fiber process

JOPTN = 1 : MLE for line-kemel function method

JOPTN = 2 : MLE for nearest-neighbor fibers

JOPTN = 3 : simulation of set 2 with line-kemel function method

JOPTN = 4 : simulation of set 2 with nearest-neighbor distance method
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LOPTN =1 ; calculate the bivariate second-moment

LOPTN = 2 : calculate the univariate second-moment

5. If IOPTN = 2 ; read coordinates of mid points of all fibers

¢ COORD(IOPNT,1), COORD(IOPNT,2) : X- and Y-coord. of the mid
point

¢ ISHFT ; analysis option
ISHFT =1 : small perturbation test

ISHFT = 2 : toroidal shift test
6. If IOPTN = 3 ; read ANGLE and coordinates of fibers
e ANGLE : step angle magnitude in degree

e COORD(IOPNT,1), COORD(IOPNT.2) : X- and Y-coord. at starting
point of fiber

COORD(IOPNT,3), COORD(IOPNT 4) : X- and Y-coord. at ending
point of fiber

7. If IOPTN = 4 ; read coordinates of {ibers of 2nd set and option MOPTN

e COORD(IOPNT,1), COORD(IOPNT,2) : X- and Y-coord. at starting
point of fiber

COORD(IOPNT,3), COORD(IOPNT 4) : X- and Y-coord. at ending
point of fiber

* MOPTN : orientation distribution option
MOPTN = | : Von Mises distribution on a circle

MOPTN = 2 : wrapped nomal distribution on a circle
8. If JOPTN < 2, read XLAMO : distance measure at star:ing point

9. If JOPTN # (, reau coordinate of 1st set of fibers
e COORD(IOPNT,1), COORD(IOPNT,2) : X- and Y-coord. at starting
point of fiber

COORD(IOPNT,3), COORD(IOPNT,4) : X- and Y-coord. at ending
point of fiber
10. If JOPTN = |, =2 or = 3 : read coord. of 2nd set of fibers
e COORD(IOPNT.1), COORD(IOPNT,2) : X- and Y-coord. at starting
point of fiber

COORD(IOPNT,3), COORD(IOPNT ) : X- and Y-coord. at ending
point of fiber
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C.4 Input Manual for Program TDIST

Program TDIST estimates the trace length distribution using MLE. Currently, only

the exponential form of the distribution is considered.

1. TRACE(IOPNT,1), TRACE(IOPNT,2), NCONF(IOPNT)
e TRACE(IOPNT,1) : trace length for IOPNT-th trace

* TRACE(IOPNT,2) : boundary length for IOPNT-th trace
e NCONF(IOPNT) = | : trace length with both ends observable
NCONF(IOPNT) = 2 : trace length with one end observable
NCONF(IOPNT) = 3 : trace length with no end observable
2. NITER : No. of iterations ( currently input as 1 )

3. NOPTN : analysis option ( currently input as 1 )

C.5 Input Manual for Program TERMN

Program TERMN generates the trace pattern according to the simulated typical

points. Also, it evaluates the termination points from calculated termination probabilities.
1. NOPNT, NOFPT, NOSIM, VMEAN, AMEAN, SIGMA, TRUNL
e NOPNT : No. of mid points generated
¢ NOFPT : No. of mid points of 1st set
e NOSIM : No. of simulation performed
e VMEAN : mean trace length of set 2
e AMEAN : mean ( strike ) angle of set 2
¢ SIGMA : standard deviation of angle of set 2
e TRUNL : truncation length of set 2
2. XBOT, XTOP, YBOT, YTOP : coordinate of simulation boundary

3. MOPTN : orientation distribution option
MOPTN = | : Von Mises distribution

MOPTN = 2 : wrapped normal distribution
4. read coordinate of 1st set CORFP
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CORFP(IOPNT,1), CORFP(IOPNT,2) : coordinate at starting point of fiber

CORFP(IOPNT,3), CORFP(IOPNT 4) : coordinate at ending point of fiber

5. IDUMM, COORD(IOPNT,1), COORD(IOPNT,2)
¢ IDUMM : dummy value

¢ COORD(IOPNT,1) : X-coord. of mid point of 2nd set
e COORD(IOPNT,2) : Y-coord. of mid point of 2nd set

C.6 Program Listings : POINT, FIBER, TDIST, TERMN

PROGRAM POINT
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCecececececccecccccecceeeee

PROGRAM POINT GENERATES PSEUDO-RANDOM NUMBERS &
CALCULATE INTER-EVENT , NEAREST EVENT DISTANCES
AND SECOND-MOMENT OF THE

SIMULATION DATA AS WELL AS MAPPED DATA

s NeNe N Ne N
QO0000n

CCCCCCCCCCCececeeeeeceeececcecceeccececececcecccccccceccccecceccee
(o]

Cc IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON/CONTR/NDOFN, DSTEP, NTOTL, NOPNT, NOSIM, NSTEP,
* NTOVL, IMAPP, IOPTN, XBOT, XRANG, YBOT,
* YRANG, KXCLS, KYCLS, KTCLS, ANGLE, NOANG
DIMENSION KK (20000), AA(30000), TITLE (20)

Cc -

C COORD : COORDINATE OF MID-POINT (NOPNT, 2)

C RSCLE : NO. OF GENERATED RANDOM NUMBER (2*NOPNT)

Cc NOFRE : NO. OF DISTANCE FREQUENCES IN A SIMULATION (NOSIM,NSTEP)

(o4 DISTS : DISTANCE MEASURE { 0.5*#NOPNT* (NOPNT-1) }

(o]
NRVAR = 30000
NIVAR = 20000

C
NDOFN = 2
READ (5,800) TITLE

800 FORMAT (20A4)

WRITE (6,800) TITLE

C

(o4 1 ANALYSIS OPTION : IOPTN

C 1 : INTER-EVENT DISTANCES

C 2 : NEAREST NEIGHBOR DISTANCES

C 3 : BOTH 1 & 2

(o] 4 SECOND MOMENT MEASURE DISTANCE

C 5 INHOMOGENEOUS POISSON P.P.

(o4 6 : MARKED POINT PROCESS

C 7 : DOUBLY STOCHASTIC P.P.

Cc




e NeNeNeNrNeNeEeNe N K]

e NeNe e NeNe]

(2o Ne]

s NeNeNe!

[ ee]

m s wN

6

NOANG
READ

-186-

ANGLE OF MEASUREMENT IN DEGREE
( OPTIONAL WHEN IOPTN = 7 )

NO. OF MID-POINTS
NO. OF SIMULATIONS INCLUDING MAPPED DATA
NO. OF DISTANCE STEPS
FLAG INDEX IMAPP

0 : SIMULATIONS ONLY

1 : INCLUDE A MAPPED PATTERN
DISTANCE STEP USED IN STATISTIC

=1
(5,%*)  IOPTN

WRITE (6, 900) IOPTN

IF (

ENDIF
READ
WRITE
READ
WRITE

KXCLS
KYCLS

IOPTN.EQ.7 ) THEN
READ (5,*) ANGLE
NOANG = 360 / ANGLE
WRITE (6, 980) ANGLE

(5.*) NOPNT, NOSIM, NSTEP, IMAPP
(6,910) NOPNT, NOSIM, NSTEP, IMAPP
(5,*) DSTEP
(6,920) DSTEP

= NO. DIVISIONS IN X-DIR.
= NO. DIVISIONS IN Y-DIR.

USED IN INHOMOGENEOQOUS POISSON POINT PROCESS
IF IOPTN.NE.5, SET KXCLS = KYCLS = 1

READ

WRITE
NTOTL
NTOVL
NTOST
NTOSI
KTCLS
NSECT

(5, %) RXCLS, KYCLS

(6,970) KXCL3, KYCLS

= NDOFN * NOPNT

= NOPNT * (NOPNT-1) / 2
= NOSIM * NSTEP

= NOSIM * NOPNT

= KXCLS * KYCLS

= NSTEP * NOANG

DYNAMIC DIMENSIONING

NR1
NR2
NR3
NR4

DFREQ
SIMUL

NR5
NR6

SVALU

NR7
NR8

1

NR1 + NTOTL
NR2 + NTOTL
NR3 + NTOVL

( NOSIM, NOPNT )
( KTCLS,2 )

NR4 + NTOSI
NR5 + KTCLS*2

NR6 + NTOST
NR7 + NOPNT

: ANGLE

: NOPNT
: NOSIM
NSTEP

: DSTEP

( NOSIM,NSTEP ) : USED IN SECOND MOMENT MEASURE
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NRS = NR8 + NSECT
NIl =1
NI2 = NIl + NTOST
NRTOT = NR9 - 1
NITOT = NI2 - 1
IERRO = 0
WRITE (6, 930) NRTOT, NRVAR
IF ( NRVAR.GT.NRTOT ) GO TO 20
WRITE (6, 940)
IERRO = IERRO + 1
20 CONTINUE
WRITE (6, 950) NITOT, NIVAR
IF ( NIVAR.GT.NITOT ) GO TO 30
WRITE (6, 960)
IERRO = IERRO + 1
30 CONTINUE
IF ( IERRO.GT.0 ) STOP
DO 40 IVARI = 1,NRVAR
40 AA(IVARI) = O.
DO 50 IVARI = 1,NIVAR
50 KK(IVARI) = 0
IF BOTH INTER-EVENT AND NEAREST NEIGHBOR DISTANCE
METHOD ARE USED, OPEN TAPE10
IF ( IOPTN.GE.3 ) THEN
OPEN (10,FILE='TAPE10’ , FORM='UNFORMATTED' K STATUS='NEW’)
ENDIF
CALL MAIN OPTION
CALL MAINS (AA(NR1l ), AA(NR2 ), AA(NR3 ), AA(NR4 ), AA(NRS ),
* AA(NR6 ), AA(NR7 ), AA(NR8 ), KK(NI1 ))
900 FORMAT (//, SX, ANALsts OPTION = ’,13,/,
* 7X,’ ( 1 : INTER-EVENT DISTANCES ) ', /.
* 7X,’ ( 2 : NEAREST EVENT DISTANCE ) ', /.
* 7X,”( 3 : BOTH 1 & 2 OPTIONS ) ., /.
* 7X,’( 4 : 2nd MOMENT MEASURE ) /.
* 7X,’ ( 5 : INHOMOGENEOUS POISSON P) ', /.
* 7X,’ ( 6 : MARKED POINT PROCESS ) ', /.
* 7X,’ ( 7 : DOUBLY STOCHASTIC P.P. ) ', /N
910 FORMAT (//., 5X,’NO. OF MID-POINT GENERATED = ’,I3,/,
* 5X,'NO. OF SIMULATIONS =,13,/,
* 5X,’NO, OF DISTANCE MEASURES = ',13,/,
* 5X, 'MAPPED PATTERN INDICATOR = ',13,/,
* 7%, ( 0 : SIMPLE SIMULATIONS ) ', /.
* 7X,’( 1 : MAPPED DATA INCLUDED ) ., /.
* /7)
920 FORMAT ( /, 5X, 'DISTANCE STEP SIZE = ',r7.3,/)
930 FORMAT ( /, 5X,’ REAL STORAGE REQUIRED = ’,17,
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* /. 5X,’REAL STORAGE SPECIFIED =',I7 )
940 FORMAT ( /, 3X,’*** INCREASE STORAGE FOR REAL ARRAYS ')
950 FORMAT ( /, 5X,'INTEGER STORAGE REQUIRED ="',17,
* /, 5X,’ INTEGER STORAGE SPECIFIED ="',1I7 )
960 FORMAT ( /, 3X,’*** INCREASE STORAGE FOR INTEGER ARRAYS')
970 FORMAT (//, 5X,'NO. OF SUBSET IN X-DIRECTION = ‘, I3,
* /., 5X,'NO. OF SUBSET IN Y-DIRECTION = ’,I3,
* /7)
980 FORMAT (//, 5X,’ANGLE OF MEASUREMENT ="',rF5.1,’ DEG.’
c
STOP
END
cc
c
SUBROUTINE MAINS ( COORD, RSCLE, DISTS, DFREQ, SIMUL, SVALU,
* TRACF., ANMOM, NOFRE )
c
c IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON/CONTR/NDOFN, DSTEP, NTOTL, NOPNT, NOSIM, NSTEP,
* NTOVL, IMAPP, IOPTN, XBOT, XRANG, YBOT,
* YRANG, KXCLS, KYCLS, KTCLS, ANGLE, NOANG
DIMENSION COORD (NOPNT,2), RSCLE (NTOTL), DISTS (NTOVL),
* NOFRE (NOSIM, NSTEP) , DFREQ (NOSIM, NOPNT),
* SIMUL (KTCLS, 2), SVALU(NOSIM, NSTEP), TRACE (NOPNT),
* ANMOM (NOANG, NSTEP)
c
c READ SIMULATION PATTERN SIZE
c
READ (5, *) XBOT,XTOP, YBOT, YTOP
XRANG = XTCP - XBOT
YRANG = YTOP - YBOT
c
c ANALYSIS OPTION
~
GO TO (100,200,300,400,500,600,700) IOPTN
c
c INTER-EVENT DISTANCE ANALYSIS
(o]
100 CONTINUE
CALL INTER ( COORD,RSCLE,DISTS,NOFRE )
GO TO 800
c
c NEAREST NEIGHBOR DISTANCE ANALYSIS
c
200 CONTINUE
CALL NEARS ( COORD, RSCLE,DISTS, NOFRE,DFREQ )
GO TO 800
(o
o] BOTH INTER-EVENT & NEAREST NEIGHBOR DISTANCES
c
300 CONTINUE
CALL INTER ( COORD,RSCLE,DISTS,NOFRE )
CALL NEARS ( COORD,RSCLE,DI.TS, NOFRE,DFREQ )
GO TO 800
c

)
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SECOND-MOMENT MEASURE METHOD
400 CONTINUE
CALL SMSTA ( COORD, RSCLE, SVALU )
GO TO 800
INHOMOGENEOUS POISSON POINT PROCESS
500 CONTINUE
CALL IHPPS ( COORD, RSCLE,DISTS, SIMUL, NOFRE, DFREQ, SVALU )
GO TO 800

MARKED POINT PROCESS
MARK : TRACE LENGTH OF EACH JOINT

600 CONTINUE
CALL MPPSS ( COORD, TRACE, SVALU )
GO TO 800
DOUBLY STOCHASTIC POINT PROCESS

700 CONTINUE
CALL DOUBL {( COORD,RSCLE,DISTS, SIMUL, NOFRE, DFREQ, SVALU, ANMOM )

800 CONTINUE

RETURN
END

SUBXOUTINE INTER ( COORD,RSCLE,DISTS, NOFRE )

SUNROUTINE INTER CALCULATES THE INTER-EVENT DISTANCE
ANALYSIS

IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON/CONTR/NDOFN, DSTEP, NTOTL, NOPNT, NOSIM, NSTEP,

* NTOVL, IMAPP, IOPTN, XBOT, XRANG, YBOT,
* YRANG, KXCLS, KYCLS, KTCLS, ANGLE, NOANG
DIMENSION COORD (NOPNT,2), RSCLE (NTOTL), DISTS (NTOVL),
* NOFRE (NOSIM, NSTEP)

JOSIM = 1

NPSIM = NOSIM

IF ( IMAPP.GT.O0 ) NPSIM = NOSIM - 1
IOSIM 1

DSEED SECNDS (0.0) * 100,

GENERATE MID-POINT COORDINATE USING RANDOM NUMBER
GENERATOR OF IMSL (GGUBS)

10 CONTINUE

CALL GGUBS ( DSEED, NTOTL, RSCLE )
DO 20 IDOFN = 1, NOPNT
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JDOFN = IDOFN * 2 - 1
KDOFN = IDOFN * 2

COORD (IDOFN, 1)
COORD (IDOFN, 2)

XBOTM + RSCLE (JDOFN) * XRANG
YBOTM + RSCLE (KCOFN) * YRANG

IF ( IDSIM.EQ.1 ) THEN
WRITE (6, 930) (COORD (IDOFN, IODOF) , IODOF=1, 2)
ENDIF
CONTINUE
CALCULATE INTER-EVENT DITANCES

CALL INDIS ( JOSIM, COORD, NOPNT,DSTEP,NSTEP, NOFRE,DISTS,

* NOSIM, NTOVL )

IF ( IOSIM.LT.NPSIM ) THEN
IOSIM = IOSIM + 1
JOSIM = JOSIM + 1
GO TO 10

ENDIF

MAPPED PATTERN ANALYSIS
IF ( IMAPP.GT.O0 ) THEN

DO 50 ICPNT = 1, NOPNT
DO 50 IDOFN = 1,NDOFN

COORD (IOPNT, IDOFN) = 0.
50 CONTINUE
DO 60 IOPNT = 1, NOPNT
READ (5,*) ( COCRD (IOPNT, IDOFN), IDOFN=1,NDOFN )
IF IOPTN = 3, SAVE COORD. DATA FOR LATER USE
IF ( IOPTN.EQ.3 ) WRITE(10) COORD (IOPNT, 1), COORD (IOPNT, 2)
€0 CONTINUE
IOSIM = NOSIM
CALL INDIS ( IOSIM,COORD, NOPNT,DSTEP, NSTEP, NOFRE,
* DISTS, NOSIM, NTOVL )
ENDIF

»

CALCULATE MIN. & MAX NO. OF DISTANCE MEASURE
IF ( NOSIM.EQ.1l ) STOP

MTOTL = 0

WRITE (6, 940)

DO 40 ISTEP = 1, NSTEI

MINNO = NOFRE (1, ISTEP)

MAXNO = NOFRE (1, ISTEP)

MTOTL = NOFRE (1, ISTEP)

DO 30 IOSIM = 2,NPSIM

IF ( NOFRE (IOSIM, ISTEP) .LT.MINNO )
MINNO = NOFRE (IOSIM, ISTEP)
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IF ( NOFRE (IOSIM, ISTEP) .GT.MAXNO )

* MAXNO = NOFRE (IOSIM, ISTEP)

MTOTL = MTOTL + NOFRE (IOSIM, ISTEP)
30 CONTINUE

2
3

MINNO

HMAXV = MAXNO

HAVRG = MTOTL

HMINV = HMINV / NTOVL

HMAXV = HMAXV / NTOVL

HAVRG = HAVRG / ( NTOVL * NPSIM )

DSTNS = DSTEP * ISTEP
EMPIRICAL SOLUTION

HEXAT = 0.
IF ( XRANG.EQ.YRANG ) THEN

HEXAT = 3.1415 * DSTNS**2 - 8*DSTNS**3 /3 + DSTNS**4/2

ELSE
HEXAT = HAVRG
ENDIF

MAPPED PATTERN CASE

IF ( IMAPP.GT.0 ) THEN
PAMAP = NOFRE (NOSIM, ISTEP)
PAMAP = PAMAP / NTOVL
WRITE (6, 950) DSTNS, HMINV, HMAXV, HEXAT, PAMAP
GO TO 40
ENDIF

WRITE (6, 950) DSTNS, HMINV, HMAXV, HEXAT
40 CONTINUE

930 FORMAT ( 5X,2(D15.7, 2X))

940 FORMAT (/, 10X, '’ INTER-EVENT DISTANCE METHOD .
* 5X, 'DISTANCE MIN. VALUE MAX. VALUE EXACT',

* ! MAPPED' ,

950 FORMAT ( 5X,F7.3,5X,4(F7.5,3X) )
RETURN
END

SUBROUTINE INDIS ( IOSIM,COORD,NOPNT,DSTEP, NSTEP, NOFRE,
* DISTS, NOSIM, NTOVL )

SUBROUTINE INDIS CALCULATES INTER-EVENT DISTANCES OF
MID-POINTS

IMPLICIT DOUBLE PRECISION (A-H,0-2)

/)

DIMENSION COORD (NOPNT, 2), NOFRE (NOSIM,NSTEP), DISTS (NTOVL)

NOPNT - 1
(0]

NPOIN
ICOUN
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NCOUN
FSTEP

NOPNT * (NOPNT-1) / 2
DSTEP

DO 10 IPOIN = 1,NPOIN

XCOOR = COORD (IPOIN, 1)
YCOOR = COORD (IPOIN, 2)
KPOIN = IPOIN + 1

DO 10 JPOIN = KPOIN, NOPNT
ICOUN = ICOUN + 1

XCOR1 = COORD (JPOIN, 1)
YCOR1 = COORD (JPIN, 2)

DISTS (ICOUN) = SQRT ( (XCOOR-XCOR1) **2+ (YCOOR~YCOR1) **2)
CONTINUE

CALCULATES THE FREQUENCIES OF DISTANCE CATEGORIES

RCOUN = O
CONTINUE
JCOUN = 0

KCOUN = KCOUN + 1

FSTEP = DSTEP * KCOUN

DO 30 ICOUN = 1,NCOUN

IF ( DISTS(ICOUN) .LE.FSTEP ) THEN
JCOUN = JCOUN + 1

ENDIF

CONTINUE

NOFRE (IOSIM, KCOUN) = JCOUN

IF ( KRCOUN.LT.NSTEP ) GO TO 20

RETURN

END

SUBROUTINE NEARS ( COORD, RSCLE,DISTS, NOFRE,DFREQ )

SUBROUTINE NEARS COMPUTE NEAREST NEIGHBOR DISTANCE
OF GIVElN EVENT

IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON/CONTR/NDOFN, DSTEP, NTOTL, NOPNT, NOSIM, NSTEP,
* NTOVL, IMAPP, IOPTN, XBOT, XRANG, YBOT,
* YRANG, KXCLS, KYCLS, KTCLS, ANGLE, NOANG
DIMENSION COORD (NOPNT, 2), RSCLE (NTOTL), DISTS(NTOVL),
* NOFRE (NOSIM,NSTEP), DFREQ (NOSIM, NOPNT)

INITIALIZE
DO 110 ICOOR = 1, NOPNT

DO 110 IDOFN = 1,NDOFN
COORD (ICOOR, IDOFN) = 0.

CONTINUE
DO 120 ITOTL = 1,NTOTL
RSCLE (ITOTL) = O.
CONTINUE

DO 130 ITOVL = 1,NTOVL
DISTS (ITOVL) = 0




o e Mo Ne

ann

s e N?]

-193-

130 CONTINUE

140

10

20

30

40

45

*

DO 140 LOSIM = 1, NOSIM
DO 140 LSTEP = 1,NSTEP
NOFRE (LOSIM, LSTEP) = 0
CONTINUE

REWIND 10
JOSIM = 1

IF ( IMAPP.GT.0 ) NPSIM = NOSIM - 1
IOSIM = 1
DSEED = SECNDS(0.0) * 100.0

GENERATE MID-POINT COORDINATE USING RANDOM NUMBER
GENERATOR OF IMSL (GGuBS)

CONTINUE

CALL GGUBS ( DSEED, NTOTL, RSCLE )

DO 20 IDOFN = 1, NOPNT

JDOFN = IDOFN * 2 - 1

KDOFN = IDOFN * 2

COORD (IDOFN,1l) = XBOT + RSCLE (JDOFN) * XRANG
COORD (IDOFN, 2) = YBOT + RSCLE (KDOFN) * YRANG
CONTINUE

CALCULATE NEAREST NEIGHBOR DISTANCE

CALL NEDIS ( IOSIM,COORD, NOPNT,DSTEP, NSTEP,NOFRE,6DISTS,
NOSIM, NTOVL, XRANG, YRANG, DFREQ, AVRGD )

IF ( IOSIM.LT.NPSIM ) THEN
IOSIM = IOSIM + 1
GO TO 10

ENDIF

MAPPED PATTERN ANALYSIS

IF ( IMAPP.GT.O0 ) THEN
PO 30 IOPNT = 1, NOPNT
PO 30 IDOFN = 1,NDOFN
COORD (IOPNT, IDOFN) = 0.
CONTINUE
IF ( IOPTN.EQ.2 ) THEN

DO 40 IOPNT = 1, NOPNT

READ (5,*) ( COORD (IOPNT, IDOFN), IDOFN=1, NDOFN)

CONTINUE
ELSE
WRITE (6, 992)
DO 45 IOPNT = 1, NOPNT
READ (10) ( COORD (IOPNT, IDOFN), IDOFN=1,NDOFN)
CONTINUE
ENDIF

JOSIM = NOSIM

CALL NEDIS ! IOSIM,COCRD,NOPNT,DSTEP, NSTEP, NOFRE,
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DISTS, NOSIM, NTOVL, XRANG, YRANG, DFREQ,
AVRGD )
AVRGD = AVRGD / ( NOPNT * ( NOPNT - 1 ) )
ENDIF

CALCULATE MIN. & MAX NO. OF DISTANCE MEASURE
IF ( NOSIM.EQ.1 ) STOP

WRITE (6, 940)

DO 60 ISTEP = 1,NSTEP

MINNO = NOFRE (1, ISTEP)

MAXNO = NOFRE (1, ISTEP)

DO 50 IOSIM = 2,NPSIM

IF ( NOFRE (IOSIM, ISTEP) .LT.MINNO )
MINNC = NOFRE (IOSIM, ISTEP)

IF ( NOFRE (IOSIM, ISTEP) .GT.MAXNO )
MAXNO = NOFRE (IOSIM, ISTEP)

50 CONTINUE

70

60

HMINV = MINNO
HMAXV = MAXNO
HMINV = HMINV / NOPNT
HMAXV = HMAXV / NOPNT
DSTNS = DSTEP * ISTEP

AVERAGE VALUE OF SIMULATED DATA

PAVRG = 0.

DO 70 IOSIM = 1,NPSIM

PAVRG = PAVRG + NOFRE (IOSIM, ISTEP)
CONTINUE

PAVRG = PAVRG / ( NPSIM * NOPNT )

MAPPED PATTERN

IF ( IMAPP.GT.0 ) THEN
PAMAP = NOFRE (NOSIM, ISTEP)
PAMAP = PAMAP / NOPNT
WRITE (6, 950) DSTNS, HMINV, HMAXV, PAVRG, PAMAP
GO TO 60
ENDIF

WRITE (6, 950) DSTNS, HMINV, HMAXV, PAVRG
CONTINUE

CALCULATE MONTE-CARLO STATISTIC

IF ( IMAPP.GT.0 ) THEN
RMINV = AMAX1 (XRANG, YRANG)
RMAXV = 0.
WRITE (6. 960)
WRITE (6, 965) AVRGD
DO 100 IOSIM = 1,NOSIM
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CSTAT = 0.
RSTAT = 0.
DO 90 ISTEP = 1,NSTEP
JSTAT = 0

2ZSTAT = NOFRE (IOSIM, ISTEP)
DO 80 JOSIM = 1,NOSIM
IF ( JOSIM.EQ.IOSIM ) GO TO 80
JSTAT = JSTAT + NOFRE (JOSIM, ISTEP)

80 CONTINUE
XSTAT = JSTAT
XSTAT = XSTAT / ( NOPNT - 1 )

CSTAT = (( ZSTAT - XSTAT ) / NOPNT )*#*2
RSTAT = RSTAT + CSTAT
90 CONTINUE

IF ( IOSIM.NE.NOSIM.AND.RSTAT.LE.RMINV ) RMINV = RSTAT
IF ( IOSIM.NE.NOSIM.AND.RSTAT.GE.RMAXV ) RMAXV = RSTAT
WRITE (6,970) IOSIM, RSTAT
100 CONTINUE
WRITE (6,980) RMINV, RMAXV, RSTAT
ENDIF
c
940 FORMAT (/, 10X, ’'NEAREST NEIGHBOR DISTANCE METHOD ./,
* 5X, 'DISTANCE MIN. VALUE MAX. VALUE AVERAGE’ ,
* ¢ MAPPED' , /)
950 FORMAT ( 5X,F7.3,5X,4(F7.5,5%X) )
960 FORMAT (//, 3X,'*** MONTE-CARLO STATISTIC’,//)
965 FORMAT ( 5X, ' SAMPLE MEAN’, 6X,F15.7,/)
970 FORMAT ( 5X,’STATISTIC ',I15,’ = ’',F15.7)
980 FORMAT (//, 3X,’EXTREME VALUES OF SIMULATION’,/,
* 5X, 'MIN. VALUE OF STATISTIC = ',F15.7,/,
* 5X, 'MAX. VALUE OF STATISTIC = ’',F15.7,/,
* X, 'MAPPED VALUE = ',F15.7 )
992 FORMAT (//.' MAPPED COORD IN NEARS ', /)
RETURN
END
cc
c
SUBROUTINE NEDIS ( IOSIM, COORD, NOPNT,DSTEP,NSTEP, NOFRE,
* DISTS, NOSIM, NTOVL, XRANG, YRANG, DFREQ,
* AVRGD )
(o
c SUBROUTINE NEDIS MEASURES THE NEAREST OTHER EVENT
c WITHIN A DISTANCE OF GIVEN EVENT
c
c 1MPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION COORD (NOPNT,2), NOFRE (NOSIM,NSTEP), DISTS (NTOVL),
* DFREQ (NOSIM, NOPNT)
c
NPOIN = NOPNT - 1
NCOUN = NOPNT - 1
FSTEP = DSTEP
o
DISMN = AMAX1 (XRANG, YRANG)
DISMX = 0.
AVRGD = 0.
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DISTANCE CALCULATION

DO 10 IPOIN = 1, NOPNT

ICOUN = 1

XCOOR = COORD (IPOIN, 1)

YCOOR = COORD (IPOIN, 2)

DO 20 JPOIN = 1, NOPNT

IF ( JPOIN.EQ.IPOIN ) GO TO 20

XCOR1 = COORD (JPOIN, 1)

YCOR1 = COORD (JPOIN, 2)

DISTS (ICOUN) = SQRT ( (XCOOR-XCOR1) **24 (YCOOR-YCOR1) **2)

CALCULATE AVERAGE NEAREST NEIGHBOR DISTANCE

IF ( IOSIM.EQ.NOSIM ) THEN
AVRGD = AVRGD + DISTS (ICOUN)
ENDIF

IF ( DISTS(ICOUN).LE.DISMN ) DISMN DISTS (ICOUN)
IF ( DISTS(ICOUN).GE.DISMX ) DISMX = DISTS (ICOUN)
ICOUN = ICOUN + 1

CONTINUZ

DFREQ (IOSIM, IPOIN) = DISMN

DISMN = AMAX1 (XRANG, YRANG)

CONTINUE

CALCULATE THE FREQUENCIES OF DISTANCE CATEGORIES

JCOUN = 0

CONTINUE

JCOUN = JCOUN + 1
KCOUN = 0

FSTEP = DSTEP * JCOUN

DO 40 IPOIN = 1, NOPNT

IF ( DFREQ(IOSIM, IPOIN) .LE.FSTEP ) THEN
KCOUN = KCOUN + 1

ENDIF

CONTINUE

NOFRE (IOSIM, JCOUN) = KCOUN

IF ( JCOUN.LT.NSTEP ) GO TO 30

RETURN

END

SUBROUTINE IHPPS (COORD, RSCLE,DISTS, SIMUL, NOFRE, DFREQ, SVALU )

SUBROUTINE IHPPS SIMULATES NON-HOMOGENEOUS POISSON POINT PROCESS
WHEN MAPPED POINT PATTERN DO NOT FOLLW HOMOGENEOUS POISSON
POINT PROCESS

IMPLICIT DOUBLE PRECISION (A-~H, 0-2)

COMMON/CONTR/NDOFN, DSTEP, NTOTL, NOPNT, NOSIM, NSTEP,
NTOVL, IMAPP, IOPTN, XBOT, XRANG, YBOT,
YRANG, KXCLS, KYCLS, KTCLS, ANGLE, NOANG




e NeNeNeNe s Ne N aOan

(e e N NeN?!

(o]

-197-
DIMENSION COORD (NOPNT, 2) , RSCLE (NTOTL) , SIMUL (KTCLS, 2),
* DISTS (NTOVL) , NOFRE (NOSIM, NSTEP) , DFREQ (NOSIM, NOPNT),
* SVALU (NOSIM, NSTEP)
REWIND 10
XCRIT = 0.5

READ CURVE-FITTING PARAMETERS

READ (5, *) XVALLl,XVALZ, YVALl, YVAL2, CONST

JOPTN = 1 : INTER-EVENT DISTANCE METHOD
2 : NEAREST NEIGHBOR DISTANCE METHOD
3 : SECOND-MOMENT MEASURE METHOD
IKERL = 1 : FIXED KERNEL FUNCTION MEASURE

2 : LINEAR KERNEL FUNCTION

READ (5,*) JOPTN, IKERL
WRITE (6, 990) JOPTN, IKERL

JITRT IS USED IN FIXED KERNEL FUNCTION OPTION
JITRT = 1 : READ COORDINATES OF GIVEN MAP

> 1 : SKIP
JITRT = 1
IXREG = ( XRANG ) / KXCLS
IYREG = ( YRANG ) / KYCLS
NPSIM = NOSIM - 1
IOSIM = 0
ICOUN = 0
JCOUN = 0
po 35 IYCLS = 1,KYCLS
JCOUN = JCOUN + 1
YRSUS = IYREG * IYCLS
YPSUS = IYREG * ( IYCLS - 1)
VALUE = (XVALL + XVAL2*IXCLS)*IXCLS + (YVALI1+YVAL2*IYCLS)*IYCLS
RAMBD = EXP ( VALUE + CONST ) * NOPNT
ILAMB = RAMBD
XLAMB = RAMBD ~ ILAMB

IF ( XLAMB.GE.XCRIT) ILAMB = ILAMB + 1
ICOUN = ICOUN + ILAMB
KCOUN = ICOUN - ILAMB + 1

8IMUL (JCOUN, 1)
SIMUL (JCOUN, 2)

JCOUN
XLAMB

NOSUS = ILAMB * NDOFN

CALL RANDP (NOSUS, RSCLE, IXCLS, I¥YCLS, IOSIM)

vii GBS EE Em (mE s =N .
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IITER = 1

DO 20 JLAMB = KCOUN, ICOUN

IDOFN = IITER * 2 - 1

JDOFN = IDOFN + 1

COORD (JLAMB, 1) = XBOT + RSCLE (IDOFN) * XRANG
COORD (JLAMB, 2) = YPSUS + RSCLE (JDOFN) * IYREG
IITER = IITER + 1

CONTINUE
CONTINUE

IF ( ICOUN.EQ.NOPNT ) GO TO 120
IREMG = NOPNT - ICOUN

NTOOM = KYCLS - 1

DO 50 K = 1,NTOIM

SUMMA = SIMUL (K, 2)

IRESI = K

KP =K + 1

DO 60 L = KP,KTCLS

IF ( SUMMA.GT.SIMUL(L,2) ) GO TO 60
SUMMA = SIMUL(L,2)

IRESI = L

CONTINUE

DIST1 = SIMUL(IRESI,1)

DIST2 = SIMUL (IRESI,2)

SIMUL (IRESI,1) = SIMUL (K, 1)
SIMUL (IRESI,2) = SIMUL (K, 2)
SIMUL (K,1) = DIST1

SIMUL(K,2) = DIST2

CONTINUE

DO 70 I = 1,IREMG

SIMUL(I,2) = SIMUL(I,2) + 100.

CONTINUE

CONTINUE

CONTINUE

IOSIM = JOSIM + 1

ICOUN = 0

MCOUN = 0

DO 90 IYCLS = 1,KYCLS

JCOUN = 0

MCOUN = MCOUN + 1

YPSUS = IYREG * ( IYCLS - 1)

DO 85 LCOUN = 1,KYCLS

XCOUN = MCOUN

IF ( SIMUL(LCOUN,1l) .EQ.XCOUN ) GO TO 86

CONTINUE

CONTINUE

VALUE = (XVAL1+XVAL2*IXCLS) *IXCLS+ (YVAL1+YVAL2*IYCLS)*IYCLS

RAMBD = EXP ( VALUE + CONST ) * NOPNT
ILAMB = RAMBD
XLAMB = RAMBD - ILAMB

IF¥ ( XLAMB.GE.XCRIT ) ILAMB = ILAMB + 1
IF¥ ( SIMUL(LCOUN,2) .GE.100. ) ILAMB = ILAMB + 1
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MODIFY DENSITY ACCORDING TO KERNEL FUNCTION
IF ( IKERL.EQ.1 ) THEN

DENSE = FLOAT (ILAMB) / ( XRANG*IYREG )

ELSE
DENSE = FLOAT (ILAMB) / FLOAT (NOPNT)
ENDIF
ICOUN = ICOUN + ILAMB
KCOUN = ICOUN - ILAMB + 1
NOSUS = ILAMB * NDOTN
NOSUS = 2
CONTINUE

CALL RANDP ( NOSUS,RSCLE, IXCLS, IYCLS, IOSIM )
CALCULATE X-DIR. INTENSITY FUNCTION
XVALU = RSCLE (1) * XRANG

IF ( IKERL.EQ.1 ) THEN
CALL KERNEL ( NOPNT,XVALU,VALUE, JITRT )
JITRT = JITRT + 1

ELSE
CALL CURVE ( XVALU, VALUE )

ENDIF

PINTE = VALUE / DENSE

IF ( RSCLE(l) .LE.PINTE ) THEN
COORD (RCOUN, 1) = XBOT + RSCLE(1l) * XRANG
COORD (KCOUN, 2) = YPSUS + RSCLE(2) * IYREG
KCOUN = RCOUN + 1
JCOUN = JCOUN + 1

ENDIF

IF ( JCOUN.LT.ILAMB ) GO TO 88

CONTINUE

IFr ( IOSIM.EQ.1) THEN
KCONT = KCOUN - 1
WRITE (6, 910) KCONT
DO 40 IOPNT = 1, NOPNT

WRITE (6, 920) ( COORD(IOPNT,IDO!N),IDOENSI,NDOFN)

CONTINUE
ENDIF

GO TO ( 210,220,230 ) JOPTN
CALL INDIS ( IOSIM, COORD, NOPNT, DSTEP, NSTEP, NOFRE
DISTS, NOSIM, NTOVL )

14

GO TO 240
CALL NEDIS ( IOSIM,COORD,NOPNT,DSTEP,NSTEP,NOFRE,
DISTS,NOSIM,NTOVL,XRANG,YRANG,DFRIQ,
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* AVRGD )
GO TO 240

230 CALL SMSTT ( IOSIM, COORD, SVALU )
Cc

240 CONTINUE
IF ( IOSIM.LT.NPSIM ) GO TO 10

MAPPED PATTERN ANALYSIS

[ e Ne]

REWIND 8
READ (8,*) SIGMA
DO 110 IOPNT = 1, NOPNT
READ (8,*) ( COORD (IOPNT, IDOFN) , IDOFN=1, NDOFN)
110 CONTINUE
IOSIM = NOSIM
GO TO ( 250, 260, 270 ) JOPTN
250 CALL INDIS ( IOSIM, COORD,NOPNT,DSTEP,NSTEP, NOFRE,
* DISTS, NOSIM, NTOVL )
WRITE (6, 950)
GO TO 280
260 CALL NEDIS ( IOSIM, COORD,NOPNT,DSTEP,NSTEP, NOFRE,
DISTS, NOSIM, NTOVL, XRANG, YRANG, DFREQ,
* AVRGD )
AVRGD = AVRGD / ( NOPNT * ( NOPNT - 1 ) )
WRITE (6, 930)
GO TO 280
270 CALL SMSTT ( IOSIM,COORD, SVALU )
280 CONTINUE

c
c GO TO SUB. KSTAT IN SECOND-MOMENT MEASURE CASE
c
IF ( JOPTN.EQ.3 ) THEN
CALL KSTAT ( SVALU, NOPNT, NOSIM, NSTEP,DSTEP )
GO TO 300
ENDIF
c
DO 150 ISTEP = 1,NSTEP
MTOTL = 0
MINNO = NOFRE (1, ISTEP)
MAXNO = NOFRE (1, ISTEP)
MTOTL = NOFRE (1, ISTEP)

DO 130 IOSIM = 2,NPSIM
IF ( NOFRE (IOSIM, ISTEP) .LT.MINNO ) MINNO
IF ( NOFRE (IOSIM, ISTEP) .GT.MAXNO ) MAXNO
MTOTL = MTOTL + NOFRE (IOSIM, ISTEP)

130 CONTINUE

NOFRE (IOSIM, ISTEP)
NOFRE (IOSIM, ISTEP)

HMINV = MINNO
HMAXV = MAXNO
IF ( JOPTN.EQ.1 ) THEN
NSTST = NTOVL
ELSE
NSTST = NOPNT
ENDIF
HEXAT = 0.
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HAVRG = MTOTL
HMINV = HMINV / NSTST
HMAXV = HMRAXV / NSTST
FAVRG = HAVRG / ( NTOVL * NPSIM )
HEXAT = HAVRG

DSTNS = DSTEP * ISTEP
AVERAGE VALUE OF SIMULATED DATA

PAVRG = 0.

DO 140 IOSIM = 1,NPSIM

PAVRG = PAVRG + NOFRE (IOSIM, ISTEP)
140 CONTINUE

PAVRG = PAVRG / ( NPSIM * NOPNT )

MAPPED PATTERN

PAMAP = NOFRE (NOSIM, ISTEP)
PAMAP = PAMAP / NSTST
IF ( JOPTN.EQ.l) THEN
WRITE (6, 940) DSTNS, HMINV, HMAXV, HEXAT, PAMAP
ELSE
WRITE (6, 940) DSTNS, HMINV, HMAXV, PAVRG, PAMAP
ENDIF
150 CONTINUE
300 CONTINUE

MONTE-CARLO STATISTICS

WRITE (6, 960)

DO 180 YOSIM = 1,NOSIM
CSTAT = 0.
RSTAT = 0.
DO 170 ISTEP = 1, NSTEP
JSTAT = 0

IF ( JOPTN.EQ.3 ) THEN

ZSTAT = SVALU(IOSIM, ISTEP)
ELSE

ZSTAT = NOFRE (IOSIM, ISTEP)
ENDIF

DO 160 JOSIM = 1,NOSIM
IF ( JOSIM.EQ.IOSIM ) GO TO 160
IF ( JOPTN.EQ.3 ) THEN
XSTAT = XSTAT + SVALU(JOSIM, ISTEP)
ELSE
JSTAT = JSTAT + NOFRE (JOSIM, ISTEP)
ENDIF
160 CONTINUE
IF ( JOPTN.NE.3 ) XSTAT = JSTAT

XSTAT = XSTAT / ( NOPNT - 1 )
CSTAT = (( ZSTAT - XSTAT ) / NOPNT ) #*%2
RSTAT = RSTAT + CSTAT

170 CONTINUE

i
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IF ( IOSIM.EQ.1 ) THEN
RMINV = RSTAT
RMAXV = RSTAT

ENDIF

IF ( IOSIM.NE.NOSIM.AND.RSTAT.LE.RMINV ) RMINV = RSTAT

IF ( IOSIM.NE.NOSIM.AND.RSTAT.GE.RMAXV ) RMAXV

WRITE (6, 970) IOSIM, RSTAT
180 CONTINUE
WRITE (6, 980) RMINV, RMAXV, RSTAT

RETURN

910 FORMAT
*

920 FORMAT

930 FORMAT

*
*
*

940 FORMAT

950 FORMAT
*

*
*

960 FORMAT
970 FORMAT

980 FORMAT
*

» *

990 FORMAT

* % % * * *

END

(//.5X, ' INHOMOGENEOUS POISSON POINT PATTERN',

RSTAT

//,

5X, ' TOTAL NO. OF MID-POINT GEWERATED =',15,//)

(7X,2(F15.7, 3X))
(//,7X,’ INKOMOGENEOUS POISSON POINT PROCESS’,
/,9X, ' NEAREST NEJI SHBOR DISTANCE STATISTIC',
5X, ’DISTANCE MIN. VALUE MAX. VALUE
’ MAPPED’,
( 5X,F7.3,5X,4(r7.5,5X) )
(//,7X,’ INHOMOGENEOUS POISSON POINT PROCESS’,
/.,9X, ' INTER-EVENT DISTANCE STATISTIC’,
5X, 'DISTANCE MIN. VALUE MAX. VALUE
¢ MAPPED’ ,

(//,7X,  *** MONTE - CARLO STATISTICS **%’' //

( 5X,’STATISTIC’,I5,’ = ’',F15.3)

(//,3X, 'EXTREME VALUES OF SIMULATION’, /,
5X, 'MIN. VALUE OF STATISTIC *,F15.3,/,
5X, 'MAX. VALUE OF STATISTIC ‘,rls5.3,/,
5X, 'MAPPED VALUE ', F15.3 )

(//,5X, ' ANALYSIS OPTION = ',

//,7X, " (1 INTER-EVENT DISTANCE METHOD

neu

/,7X,’” { 2 : NEAREST NEIGHBOR DISTANCE METHOD

/,IX," (3 SECOND MOMENT MEASURE METHOD
//.5X, ' KERNEL FUNCTION OPTION = ’,
//7,7%, " (1 FIXED KERNEL FUNCTION

/7K, (2 LINEAR KERNEL FUNCTION

SUBROUTINE RANDP (NOSUS, RSCLE, IXCLS, IYCLS, IOSIM)

SUBROUTIN RANDP GENERATE PSUDO-RANDOM NUMBER
USING IMSL LIBRARY

DIMENSION RSCLE (NOSUS)

IF ( IYCLS.EQ.1.AND.IOSIM.EQ.O )

DSEED = SECNDS(0.0) * 100.0

CALL GGUBS ( DSEED,NOSUS,RSCLE )

RETURN
END

/.
//I
AVERAGE',
/7)

/I
//I
AVERAGE',
/7)
)
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SUBROUTINE CURVE ( XVALU, VALUE )
SUBROUTINE CURVE CALCULATE CURVE FITTING COEFFICIENTS

IMPLICIT DOUBLE PRECISION (A-H,0-2)

FUNC1 = EXP( -0.5%( (XVALU-3. )/1.2 )*#%2 )
FUKC1 = 0.368*FUNC1/( 1.2%*2.5 )

FUNC2 = EXP( -0.5%( (XVALU-9.2 )/2.03)**2 )
FUNC2 = 0.86 *FUNC2/( 2.03*2.5 )

FUNC3 = EXP( -0.5*( (XVALU-13.4 )/0.86)**2 )
FUNC3 = 0.14*FUNC3 /(0.86 * 2.5 )

FUNC4 = EXP( -0.5*( (XVALU-22.65)/0.93 )**2 )
FUNC4 = 0.42*FUNC4/(0.93 * 2.5 )

FUNCS5 = EXP( -0.5%( (XVALU-34.35 )/4.3 )**2 )
FUNC5 = 1. ?*FUNC5/(4.3%2.5)

FUNC6 = EXP{ -0.5*%( (XVALU-44.7 )/4.4 )**2 )
FUNC6 = 0.41*FUNC6/(4.4*2.5)

VALUE = FUNC1l + FUNC2 + FUNC3 + FUNC4 4 FUNC5 + FUNC6
RETURN

END

SUBROUTINE KERNEL ( NOPNT, XVALU, VALUE, JITRT )

SUBROUTINE KERNEL EVALUATE FIXED KERNEL FUNCTION OF
ANY GIVEN DATA POINT IN X~-DIRECTION

IMPLICIT DOUBLE PRECISION (A-H,6 0-2)
DIMENSION COORD (106, 2)

IF ( JITRT.EQ.1 ) THEN

READ STANDARD DEVIATION OF THE KERNEL FUNCTION
READ (8, *) SIGMA

READ COORDINATES OF GIVEN MAP
DO 10 IOPNT = 1,NOPNT
READ (8,*) (COORD (IOPNT,IDOFN), IDOFN=1,2)
CONTINUE

WRITE (6, 920) SIGMA
ENDIF

PITHO = 6.283185
DO 20 IOPNT = 1, NOPNT

XMEAN = COORD (IOPNT, 1)
FUNCT = EXP ( -0.5* ( (XVALU - XMEAN) /SIGMA)**2 )
VALUE = VALUE + FUNCT / ( SQRT (PITWO)*SIGMA )
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c CONSIDER EDGE EFFECTS

IF ( XMEAN.LE.20..OR.XMEAN.GE.30. ) THEN
FUNCT = EXP ( ~0.5*%( (XVALU + XMEAN)/SIGMA)**2 )
VALUE = VALUE + FUNCT / ( SQRT(PITWO)*SIGMA )
ENDIPF
20 CONTINUE
VALUE = VALUE / NOPNT

c
920 FORMAT(//,5X, STD. DEV. IN KERNEL FUNCTION = ',F5.3,//)
RETURN
END
cc
c
SUBROUTINE SMSTT ( IOSIM, COORD, SVALU, ANMOM, NOJOB )
c
c SUBROUTINE SMSTT EVALUATE SECOND-MOMENT STATISTIC OF
c MAPPED DATA
c
c IMPLICIT DOUBLE PRECISION (A-H,O-Z)
c
COMMON/CONTR/NDOFN, DSTEP, NTOTL, NOPNT, NOSIM, NSTEP,
* NTOVL, IMAPP, IOPTN, XBOT, XRANG, YBOT,
* YRANG, KXCLS, KYCLS, KTCLS, ANGLE, NOANG
DIMENSION COORD (NOPNT,2), SVALU(NOSIM,NSTEP),
* ANMOM (NOANG, NSTEP)
c
NPSIM = NOSIM - 1
NPPNT = NOPNT - 1
CNSTV = 1.
c
DO 30 ISTEP = 1,NSTEP
SVALU (IOSIM, ISTEP) = 0.
DO 30 IOANG = 1, NOANG
ANMOM (IOANG, ISTEP) = 0.
30 CONTINUE
c
c CALCULATE WEIGHTING COEFFICIENT w(X,u)
c

DO 20 IPOIN = 1, NOPNT
XCOOR = COORD (IPOIN, 1)

YCOOR = COORD (IPOIN, 2)

DIST1 = AMIN1 ( XCOOR, (XRANG - XCOOR) )
DIST2 = AMIN1 ( YCOOR, (YRANG ~ YCOOR) )
SQDIS = DIST1%#*2 4 DIST2**2

DO 10 JPOIN = 1, NOPNT
IFr ( JPOIN.EQ.IPOIN ) GO TO 10
XCOR1 = COORD (JPOIN, 1)
YCOR1 = COORD (JPOIN, 2)
DISTO = SQRT ( (XCOOR-XCOR1) *#*24 (YCOOR-YCOR1) **2)
WEIGT = 0.
ISTEP = DISTO / DSTEP + 1
Ir ( ISTEP.GT.NSTEP ) GO TO 10
IF ( DISTO®"*2 LE.SQDIS ) THEN
DIST3 = ACOS( CNSTV * AMIN1 (DIST1,DISTO) / DISTO )
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DIST4 = ACOS( CNSTV * AMIN1 (DIST2,DISTO) / DISTO )
WEIGT = 1. - ( DIST3 + DIST4 ) / 3.14159
ELSE
DIST3 = ACOS( CNSTV * DIST1 / DISTO )
DIST4 = ACOS( CNSTV * DISTZ / DISTO )
WEIGT = 0.75 - ( DIST3 + DIST4 ) / 6.28318
ENDIF

WEIGT = XRANG * YRANG / ( WEIGT * (NOPNT)**2 )
CALCULATE K FUNCTION

SVALU (IOSIM, ISTEP) = SVALU (IOSIM, ISTEP) + WEIGT
CALCULATE ANGULAR K-FUNCTION

IF ( NOJOB.NE.3 ) GO TO 10
IF ( IOSIM.EQ.NOSIM ) THEN
ANGL2 = ATAN( (YCOR1-YCOOR)/ (XCOR1~XCOOR) )
IF( ANGL2.LT.0. ) THEN
ANGL1 = 360. + ANGL2
IF ( XCOR1.LT.XCOOR ) ANGL1
ELSE
ANGL1 = ANGL2
IF ( XCOR1.LT.XCOOR ) ANGL1
ENDIF
IOANG = ANGL1 / ANGLE + 1
WEIGT = XRANG * YRANG / ( NOPNT**2 )
ANMOM (IOANG, ISTEP) = ANMOM (IOANG, ISTEP) + WEIGT
ENDIF

180. + ANGL2

180. + ANGL2

CONTINUE
CONTINUE

CUMULATIVE K FUNCTION

CONTINUE

DO 40 ISTEP = 1,NSTEP
ADDTV = 0.

IF ( ISTEP.EQ.1 ) GO TO 40
KSTEP = ISTEP - 1

ADDTV = SVALU(IOSIM, KSTEP)
SVALU (IOSIM, ISTEP) = SVALU(IOSIM, ISTEP) + ADDTV
CONTINUE

IF¥ ( IOSIM.NE.NOSIM ) RETURN
CUMULATIVE ANGULAR K-FUNCTION

IF ( NOJOB.NE.3 ) RETURN
DO 70 JOANG = 1, NOANG
DO 60 ISTEP = 1, NSTEP
ADDTV = 0.

Ir ( ISTEP.EQ.1) GO TO 60
KSTEP = ISTEP -~ 1
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ADDTV = ANMOM (JOANG, KSTEP)

ANMOM (JOANG, ISTEP) = ANMOM (JOANG, ISTEP) + ADDTV
60 CONTINUE
70 CONTINUE

RETURN

END
cC
C

SUBROUTINE KSTAT (SVALU, NOPNT, NOSIM, NSTEP, DSTEP, XRANG, YRANG, ANMOM,

* ANGLE , NOANG, NOJOB )
Cc
o] SUBROUTINE KSTST INTERPRET THE K FUNCTION
C
C IMPLICIT DOUBLE PRECISION (A-H,0-2)
(o

DIMENSION SVALU (NOSIM,NSTEP), ANMOM(NOANG,NSTEP), ANCOV(100)
o
C FIND MIN. & MAX. VALUE OF SIMULATED DATA
C

AREAT = XRANG * YRANG

XLAMB = NOPNT / AREAT

XLAM2 = XLAMB**2
C

WRITE (6, 910)

NPSIM = NOSIM - 1

PHI'U = 3.141592
o

DO 20 ISTEP = 1,NSTEP

STOTL = 0.

IF (NOJOB.EQ.3) GO TO 15

SMINV = SVALU(1l, ISTEP)

SMAXV = SVALU(1l, ISTEP)

STOTL = SVALU (1, ISTEP)

DO 10 IOSIM = 2,NPSIM

IF ( SVALU(IOSIM, ISTEP).LT.SMINV ) SMINV = SVALU(IOSIM, ISTEP)

IF ( SVALU (IOSIM, ISTEP) .GT.SMAXV ) SMAXV = SVALU(IOSIM, ISTEP)

STOTL = STOTL + SVALU(IOSIM, ISTEP)

10 CONTINUE

SAVRG = STOTL / NPSIM
Cc
C MAPPED PATTERN
C

15 CONTINUE

C

SMAPP = SVALU(NOSIM, ISTEP)
C
C STABILIZE THE K VALUE
Cc

DSTNS = DSTEP * ISTEP

DSTS2 = DSTNS **2

SMINV = SMINV - PHIVU*DSTS2

SMAXV = SMAXV - PHIVU*DSTS2

SAVRG = SAVRG - PHIVU*DSTS2

SMAPP = SMAPP - PHIVU*DSTS2
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WRITE (6, 920) DSTNS, SMINV, SMAXV, SAVRG, SMAPP

ENDIF

20 CONTINUE
IF ( NOJOB.NE.3 ) RETURN

CALCULATE ANISOTROPIC COVARIANCE FUNCTION

WRITE (6, 930)

NOAN1
NSTP1

DO 25

JOANG

ANMOM (IOANG, ISTEP) = ANMOM (IOANG, ISTEP) + ANMOM (JOANG, ISTEP)

NOANG
NSTEP

ISTEP =
DO 26 IOANG =

IOANG

26 CONTINUE
DO 27 KRANGL = 1,18

ANMOM (KANGL, ISTEP)

27 CONTINUE

DSTS1
SVUTN
THERY

DSTEP

/ 2
-1

1,NSTEP
1, NOAN1
+ NOAN1

* ISTEP

SVALU (NOSIM, ISTEP)
PHIVU * DSTS1**2

25 CONTINUE

WRITE (6, 950)
WRITE (6, 970)
XLAMB = NOPNT / AREAT

ANMOM (4, ISTEP)

SVALU (NOSIM, ISTEP)
PHIVU * DSTNS * 2,

ANGCT = 1.

DO 70 ISTEP =
JSTEP = ISTEP
DSTNS = JSTEP
ANCOl =

ANCO2 =
DKFUN =

COEF2 =

ANCOl = ANCOl
ANCO2 = ANCO2
DKFUN = DKFUN
COVAl = ANCO1l
COVA2 = ANCO2
COVA3 = DKFUN

WRITE (6, 980) DSTNS, ANCOl, ANCO2, DKFUN, COVAl, COVA2, COVA3

70 CONTINUE

2,NSTEP
-1
* DSTEP

/ COEFr2
/ COEFr2
/ COEFr2

- 1.
- 1.
- 1.

= ANMOM (KANGL, ISTEP) * 18.

- ANMOM (4, JSTEP)
ANMOM (13, ISTEP) - ANMOM (13, JSTEP)

- SVALU (NOSIM, JSTEP)
* DSTEP

910 FORMAT(//,7X, ' INHOMOGENEOUS POISSON POINT PROCESS’,

*
*
*

920 FORMAT (

/., 7X, ' SECOND-MOMENT MEASUREMENT STATISTIC',//,
3X, ' DISTANCE

2X, ' AVERAGE
1x,r9.3,1Xx,5(r9.3,1X) ,F15.6 )

MIN. VALUE MAX. VALUE',

MAPPED

K-ft COVARIANCE',

/1)
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930 FORMAT (//,7X,’'ANGULAR K - FUNCTION’,/,5X, 'DIST.’,
* 2X, 'K (40) K(130) K (MAPPED) K(IS0.)'/)
950 FORMAT(//,7X,’ ANGULAR K-MOMENT MEASURE',/)
970 FORMAT (//,5X,’ COVARIANCE FUNCTION’,/,
* 7X,’ DIST. CovV(x, 40.) COV(r, 130) cov(x,360.)',/)
980 FORMAT (2X,F6.3,6(F9.5,1X))

RETURN
END

SUBROUTINE SMSTA ( COORD, RSCLE, SVALU )

SUBROUTINE SMSTA CALCULATE SECOND MOMENT MEASURE DISTANCE
OF MID-POINT MAP

IMPLICIT DOUBLE PRECISION (A-H,O-2)

COMMON/CONTR/NDOFN, DSTEP, NTOTL, NOPNT, NOSIM, NSTEP,

* NTOVL, IMAPP, IOPTN, XBOT, XRANG, YBOT,

* YRANG, KXCLS, KYCLS, KTCLS, ANGLE, NOANG
DIMENSION COORD (NOPNT,2), RSCLE (NTOTL), SVALU (NOSIM,NSTEP)

NPSIM = NOSIM

IF ( IMAPP.GT.0 ) NPSIM = NOSIM - 1
IOSIM = 1

DSEED = SECNDS(0.0) * 100.

GENERATE MID-POINT COORDINATE USING RANDOM NUMBER
GENERATOR OF IMSL ( GGUBS )

WRITE (6, 900)
10 CONTINUE
CALL GGUBS ( DSEED, NTOTL,RSCLE )
DO 20 IDOFN = 1, NOPNT
JDOFN = IDOFN * 2 - 1
KDOFN = IDOFN * 2
COORD (IDOFN,1) = XBOT + RSCLE (JDOFN) * XRANG
COORD (IDOFN,2) = YBOT + RSCLE (KDOFN) * YRANG

IF ( IOSIM.EQ.1 ) THEN
WRITE (6, 910) (COORD (IDOFN, IODOF) , IODOF=l, 2)
ENDIF
20 CONTINUE
CALCULATE SECOND-MOMENT MEASURE
CALL SMSTT ( IOSIM, COORD, SVALU )
IF¥ ( IOSIM.LT.NPSIM ) THEN
IOSIM = IOSIM + 1
GO TO 10
ENDIF

MAPPED PATTERN ANALYSIS
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IF ( IMAPP.GT.0 ) THEN
DO 50 IOPNT = 1, NOPNT
DO 50 IDOFN = 1, NDOFN
COORD (IOPNT, IDOFN) = 0.
50 CONTINUE
DO 60 IOPNT = 1, NOPNT
READ (5,%*) ( COORD (IOPNT, IDOFN), IDOFN=1, NDOFN )
60 CONTINUE

IOSIM = NOSIM
CALL SMSTT ( IOSIM, COORD, SVALU )
ENDIF
CALCULATE MIN. & MAX. NO. OF DISTANCE MEASURE

IF ( NOSIM.EQ.l1l ) RETURN
CALL KSTAT ( SVALU, NOPNT,NOSIM, NSTEP, DSTEP, XRANG, YRANG)

900 FORMAT (//,5X,’ SECOND MOMENT MEASURE DISTANCE METHOD’,//)
910 FORMAT ( 2(F15.7,5X) )

RETURN
END
SUBROUTINE MPPSS ( COORD, TRACE, SVALU )

SUBROUTINE MPPSS EVALUATE MARKED POINT PROCESS AND
CALCULATE K-FUNCTION OF MARKS

IMPLICIT DOUBLE PRECISION (A-H,60-2)
COMMON/CONTR/NDOFN, DSTEP, NTOTL, NOPNT, NOSIM, NSTEP,

* NTOVL, IMAPP, IOPTN, XBOT, XRANG, YBOT,
* YRANG, KXCLS, KYCLS, KTCLS, ANGLE, NOANG
DIMENSION COORD (NOPNT, 2) , TRACE (NOPNT) ,

* SVALU (NOSIM, NSTEP)

READ MID-POINT COORDINATE & TRACE LENGTH

TMEAN = 0.
DO 5 IOPNT = 1, NOPNT
READ (7,*) IDUMM, (COORD (IOPNT, IDOFN), IDOFN=1, NDOFN) , TRACE (IOPNT)
TMEAN = TMEAN + TRACE (IOPNT)
5 CONTINUE
TMEAN = TMEAN / NOPNT
WRITE (6, 999) TMEAN
TMEN2 = TMEAN#*2

INITIALIZE K-FUNCTION & M.P.P. K-FUNCTION

DO 30 ISTEP = 1,6 NSTEP

SVALU (1, ISTEP) = 0.

SVALU (2, ISTEP) = 0.
30 CONTINUE
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CONSIDER EDGE EFFECT

DO 20 IPOIN = 1, NOPNT

XCOOR = COORD (IPOIN,1)

YCOOR = COORD (IPOIN, 2)

DIST1 = AMIN1 ( XCOOR, (XRANG - XCOOR) )
DIST2 = AMIN1 ( YCOOR, (YRANG - YCOOR) )
SQDIS = DIST1**2 + DIST2#**2

DO 10 JPOIN = 1,NOPNT
IF ( JPOIN.EQ.IPOIN ) GO TO 10

XCOR1 = COORD (JPOIN, 1)

YCOR1 = COORD (JPOIN, 2)

DISTO = SQRT ( (XCOOR-XCOR1) **24 (YCOOR-YCOR1) **2)
WEIGT = O.

ISTEP = DISTO / DSTEP + 1

IF ( ISTEP.GT.NSTEP ) GO TO 10
IF ( DISTO**2 LE.SQDIS ) THEN

DIST3 = ACOS( AMIN1 (DIST1,DISTO) / DISTO )

DIST4 = ACOS( AMIN1 (DIST2,DISTO) / DISTO )

WEIGT = 1. ~ ( DIST3 + DIST4 ) / 3.14159
ELSE

DIST3 = ACOS( DIST1 / DISTO )

DIST4 = ACOS( DIST2 / DISTO )

WEIGT = 0.75 - ( DIST3 + DIST4 ) / 6.28318
ENDIF

SVALU (1, ISTEP) = SVALU(1l,ISTEP) + 1. / WEIGT
SVALU (2, ISTEP) = SVALU(2,ISTEP) + 1. / WEIGT *
* TRACE (IPOIN) * TRACE (JPOIN)
10 CONTINUE
20 CONTINUE

CUMULATIVE K & MARKED K FUNCTION

WRITE (6, 900)
DO 40 ISTEP = 1,NSTEP
SVALU (2, ISTEP) = SVALU (2, ISTEP) / SVALU(1, ISTEP)
DSTNS = DSTEP * ISTEP
PAIRF = SVALU(2, ISTEP) / TMEN2
PAIRC = SVALU(2,ISTEP) / SVALU(1, ISTEP)
WRITE (6,910) DSTNS, PAIRC, PAIRF
40 CONTINUE

900 FORMAT (//,7X, ' MARKED POINT PROCESS’,/,

* /.5X,’ DISTANCE CORRELATION F STABILIZED IF ')
910 FORMAT (5X,3(F10.3,3X) )
999 FORMAT(//,5X, ' TMEAN = ' ,F15.7)

RETURN

END

SUBROUTINE DOUBL ( COORD,RSCLE,DISTS, SIMUL, NOFRE, DFREQ, SVALU,
* ANMOM )
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SUBROUTINE DOUBL ESTIMATES THE DOUBLY STOCHASTIC POINT
PROCESS.

IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON/CONTR/NDOFN, DSTEP, NTOTL, NOPNT, NOSIM, NSTEP,

* NTOVL, IMAPP, IOPTN, XBOT, XRANG, YBOT,
* YRANG, KXCLS, KYCLS, KTCLS, ANGLE, NOANG
DIMENSION COORD (NOPNT, 2), RSCLE (NTOTL), SIMUL (KTCLS,2),
* DISTS (NTOVL), NOFRE (NOSIM, NSTEP),

* DFREQ (NOSIM, NOPNT), SVALU (NOSIM, NSTEP),

* ANMOM (NOANG, NSTEP)

DIMENSION RSCL1 (5000), HCOOR (5000, 2)

REWIND 10

IFLAG = 0

JITRT = 1

NPSIM = NOSIM - 1

ANALYSIS OPTION

NOJOB = 1 : DO COX PROCESS WITH BIVARIATE NORMAL KERNEL FUNCTION
NOJOB = 2 : USING ANGULAR K-FUNCTION SIMULATE THE COX PROCESS
NOJOB = 3 : CALCULATE THE ANGULAR K-FUNCTION

READ (5, *) NOJOB
GO TO ( 5, 100, 35, 5 ), NOJOB

ITERATE FOR EACH SIMULATIONS

CONTINUE

DO 30 IOSIM = 1,NPSIM
IF (NOJOB.EQ.4) GO TO 6
IF ( IOSIM.EQ.1 ) THEN

CALCULATE THE MAX. DENSITY COEFFICIENT IN AN AXI-SYMMETRIC
NORMAL DENSITY FUNCTION.

CALL MAXCF ( COEMX, NOPNT, XRANG, YRANG, XBOT, YBOT )

GENERATE THE HOMOGENEOUS POISSON POINT PATTERN ACCORDING TO
THE MAX. DENSITY FUNCTION.
NOGPT : NO. OF POINTS GENERATED

AREAT
NOGPT
NOGP2
DSEED
ENDIF

XRANG * YRANG
COEMX * AREAT
2 * NOGPT
123457.D0

CONTINUE

CALL GGUBS ( DSEED, NOGP2, RSCL1 )

DO 20 IDOFN = 1, NOGPT

JDOFN = IDOFN 4 NOGPT

HCOOR (IDOFN,1) = XBOT + RSCL1 (IDOFN) * XRANG
HCOOR (IDOFN, 2) = YBOT + RSCL1 (JDOFN) * YRANG
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20 CONTINUE

30

35

40

100

80

85

90

DO THINNING PROCESS AND GET A COX PATTERN

CALL THINP ( NOGPT, HCOOR, COORD, NOPNT, COEMX, IOSIM,
* XRANG, YRANG, XBOT, YBOT )

2nd MOMENT MEASURE

CALL PAREN ( COORD, IOSIM )

CALL SMSTT ( IOSIM, COORD, SVALU, ANMOM, NOJOB )
CONTINUE

GO TO 85

MAPPED PATTERN ANALYSIS

CONTINUE

REWIND 8

READ (8,*) DUMMY, DUMM1l, IDUMM

DO 40 IOPNT = 1, NOPNT

READ (8,*) ( COORD (IOPNT, IDOFN), IDOFN=1, NDOFN )
CONTINUE

IOSIM = NOSIM

CALL SMSTT ( IOSIM, COORD, SVALU, ANMOM, NOJOB )

CALL KSTAT ( SVALU, NOPNT, NOSIM, NSTEP, DSTEP, XRANG, YRANG, ANMOM,

* ANGLE, NOANG, NOJOB)

IF (NOJOB.EQ.3) RETURN

CONTINUE

DO 80 IOSIM = 1,NPSIM

CALL SPECT ( NSTEP, NOPNT, XRANG, YRANG, COORD, IOSIM, DSTEP)
CALL SMSTT ( IOSIM, COORD, SVALU, ANMOM, NOJOB )
CONTINUE

MAPPED PATTERN ANALYSIS

CONTINUE

DO 90 IOPNT = 1, NOPNT

READ (8,*) ( COORD (IOPNT, IDOFN), IDOFN=1l,NDOFN )
CONTINUE

IOSIM = NOSIM

CALL SMSTT ( IOSIM, COORD, SVALU, ANMOM, NOJOB )

CALL KSTAT ( SVALU, NOPNT, NOSIM, NSTEP,DSTEP, XRANG, YRANG, ANMOM,

* ANGLE, NOANG, NOJOB )

WRITE (6, 910)
MONTE-CARLO STATISTIC

WRITE (6, 920)

DO 70 IOSIM = 1,NOSIM
CSTAT = 0.

RSTAT = 0.

DO 60 ISTEP = 1, NSTEP
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JSTAT = O
XSTAT = O.
ZSTAT = SVALU(IOSIM, ISTEP)

DO 50 JOSIM = 1,NOSIM
IF ( JOSIM.EQ.IOSIM ) GO TO 50
XSTAT = XSTAT + SVALU (JOSIM, ISTEP)
CONTINUE
XSTAT
CSTAT
RSTAT
CONTINUE
IF ( IOSIM.EQ.1 ) THEN

RMINV RSTAT

RMAXV RSTAT
ENDIF
IF ( IOSIM.NE.NOSIM.AND.RSTAT.LE.RMINV ) RMINV
IF ( IOSIM.NE.NOSIM.AND.RSTAT.GE.RMAXV ) RMAXV
WRITE (6, 930) IOSIM, RSTAT
CONTINUE
WRITE (6, 940) RMINV, RMAXV, RSTAT

XSTAT / ( NOSIM - 1 )
( ZSTAT -~ XSTAT ) **2
RSTAT + CSTAT

RSTAT
RSTAT

FORMAT (//, 5X, ' DOUBLY STOCHASTIC POINT PROCESS’,// )
FORMAT (//,5X, ' *** MONTE - CARLO STATISTIC *#**', //)

FORMAT ( 5X, ' STATISTIC’,1I5,' = ',F15.3 )

FORMAT (//, 3X, ' EXTREME VALUES OF SIMULATION', /.

* 5X, 'MIN. VALUE OF STATISTIC = ’,F15.3,/,

* 5X, 'MAX. VALUE OF STATISTIC = ',Fr15.3,/,
5X, 'MAPPED VALUE = ‘,F15.3 )

RETURN

END

SUBROUTINE COXPP ( NOPNT, XVALU, YVALU, VALUE, JITRT, XRANG, YRANG,

* XBOT, YBOT )

SUBROUTINE COXPP EVALUATE THE DOUBLY STOCHASTIC PROCESS
( COX PROCESS ) IN A PLANE

INTENSITY FUNCTION IS ASSUMED TO SYMMETRIC NORMAL
DENSITY FUNCTION.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION COORD (39,2), RSCLE (1000)

READ COORDINATES OF THE DATA AT THE FIRST ITERATION

REWIND 8

NOPN2 = NOPNT * 2
PITWO = 6.283185

IF ( JITRT.EQ.1l) THEN

READ MEAN VALUE AND STANDARD DEVIATION OF THE NORMAL FUNCTION
LPOTN : 1 : INHOMOGENEOUS INTENSITY FUNCTION
2 : HOMOGENEOUS INTENSITY FUNCTION
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READ (8,*) VMEAN, SIGMA, LOPTN

IF ( LOPTN.EQ.1 ) THEN
DO 10 IOPNT = 1, NOPNT
READ (8,*) ( COORD (IOPNT, IDOFN), IDOFN=1,2 )
10 CONTINUE
ELSE

DSEED = SECNDS(0.0) * 100.
CALL GGUBS ( DSEED,NOPN2, RSCLE )
DO 15 IDOFN = 1, NOPNT
JDOFN = IDOFN + NOPNT
COORD (IDOFN,1) = XBOT + RSCLE (IDOFN) * XRANG
COORD (IDOFN, 2) = YBOT + RSCLE (JDOFN) * YRANG
15 CONTINUE
ENDIF

WRITE (6, 910) VMEAN, SIGMA
ENDIF

AXI~SYMMETRIC BIVARIATE NORMAL DISTRIBUTION FUNCTION

0o

VALUE = 0.
DO 20 IOPNT = 1, NOPNT
XMEAN COORD (IOPNT, 1)
YMEAN COORD (IOPNT, 2)
XVALl { XVALU - XMEAN ) **2
YVALLl ( YVALU - YMEAN ) **2
FUNCT EXP ( ~0.5*( XVAL1l + YVALl ) / SIGMA**2 )
VALUE VALUE + FUNCT / ( PITWO*SIGMA**2 )
20 CONTINUE

wuwnuuan

c
VALUE = VALUE * VMEAN
c
910 FORMAT(//,5X, 'MEAN VALUE IN NORMAL FUNCTION = ’,F5.3,/,
* 5X,’STD. DEV. IN NORMAL FUNCTION = ’,F5.3,/)
RETURN
END

Q

SUBROUTINE MAXCF ( COEMX, NOPNT, XRANG, YRANG, XBOT, YBOT )

CALCULATES THE MAX. DENSITY COEFFICIENT OF GIVEN DENSITY
FUNCTION

aaQaaooan

IMPLICIT DOUBLE PRECISION (A-H,60-2)
DIMENSION COEFT (5000)

(g]
AN

LXDIR
LYDIR
JITRT

:

G + 1
YRANG + 1

[}

READ (9,*) IXSTP,IYSTP

COoEMX = 0.
DO 10 IXCON = 1, LXDIR, IXSTP

—
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DO 20 IYCON = 1, LYDIR, IYSTP
XVALU = IXCON
YVALU = IYCON

CALL COXPP ( NOPNT, XVALU, YVALU, VALUE, JITRT, XRANG, YRANG,

* XBOT, YBOT )
COEFT (JITRT) = VALUE

FIND THE MAX. COEFFICIENT

IF ( COEFT(JITRT) .GT.COEMX ) THEN

COEMX = COEFT (JITRT)
IXREG = IXCON
IYREG = IYCON
ENDIF
JITRT = JITRT + 1
CONTINUE
CONTINUE

WRITE (6,910) COEMX

WRITE (66, 920) IXSTP, IYSTP, IXREG, IYREG, COEMX

910 FORMAT(//,5X,’MAX. DENSITY COEFFICIENT = ',F10.4,//)
920 FORMAT(//,5X,’'X-DIR. STEP SIZE = ',1I3,/,

* 5X,’Y-DIR. STEP SIZE = ',I3,/,

* SX, ' APPROX. X-COORD = ‘,I3,/,

* 5X,’ APPROX. Y-COORD = ’,I3,/,

* 5X, 'MAX. DEN. COEFF. = ' ,F10.4,/)

RETURN

END

40

SUBROUTINE THINP ( NOGPT, HCOOR,
* XRANG, YRANG,

COORD, NOPNT, COEMX, IOSIM,

XBOT, YBOT )

SUBROUTINE THINP EVALUATES THE THINNING PROCESS

IMPLICIT DOUBLE PRECISION (A-H,60-2)
DIMENSION HCOOR(5000,2), RSCLE(1l),

COORD (NOPNT, 2)

CALL COXPP TO CALCULATE THE DENSITY COEFFICIENT

JITRT = JITRT + 1

DO 10 IOGPT = 1,NOGPT
XVALU = HCOOR (IOGPT, 1)
YVALU = HCOOR (IOGPT, 2)

IF ( XVALU.LT.0. ) GO TO 10

CALL COXPP ( NOPNT, XVALU, YVALU, VALUE, JITRT, XRANG, YRANG, XBOT, YBOT )

CARE FOR A DSEED VALUE IN RADOP ROUTINE

Ir ( JITRT.EQ.2 ) THEN

CALL RANDP ( 1, RSCLE, O, IOGPT, 0 )
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ELSE
CALL RANDP ( 1, RSCLE, O, 0, 0 )
ENDIF

DENSE = VALUE / COEMX

IF ( RSCLE(1) .GT.DENSE ) GO TO 10
KCOUN = KCOUN + 1

DO 20 IDOFN = 1,2

COORD (KCOUN, IDOFN) = HCOOR (IOGPT, IDOFN)

CONTINUE

HCOOR (IOGPT,1l) = —-HCOOR(IOGPT,1)
IFr ( KCOUN.EQ.NOPNT ) GO TO 30
CONTINUE

CONTINUE

CALCULATE THE EXACT NO. OF POINTS THAT SHOULD BE GENERATED

WRITE (66, 910) JITRT-1, KCOUN
IF ( JITRT.GE.5 ) THEN
WRITE (66, 920) JITRT-1
RETURN
ENDIF
IF ( KCOUN.NE.NOPNT ) GO TO 40
IF ( IOSIM.EQ.1 ) THEN
WRITE (6, 930) KCOUN
WRITE (6, 940)
DO 60 JOPNT = 1, KCOUN
WRITE (6,950) JOPNT, {COORD (JOPNT, IDOFN) , IDOFN=1, 2)

CONTINUE

ENDIF

FORMAT (//,5X, 'NO. OF ITERATIONS TO GENERATE THE POINTS = ', 13,/,
* 5X, 'NO. POINTS GENERATED = ',13,/)
FORMAT (//,5X, ' *** TOO MANY ITERATIONS (',I2,’ )’',//)

FORMAT (//,5X, 'NO. OF POINTS GENERATED = ',I5,///)
FORMAT (//, 5X, ' DOUBLY STOCHASTIC POINT PATTERNS', /)
FORMAT (3X, I3,5X,2(F15.7,3X))

RETURN

END

SUBROUTINE NORML ( NSTEP, NOPNT, XRANG, YRANG, COORD, IOSIM )
THE CORRELATION COEFFICIENTS WITH GGNML ( IMSL ).

IMPLICIT DOUBLE PRECISION (A-H,60-2)
DIMENSION COORD (106, 2) , RSCLE (1000)

REWIND 10
ICOUN
NOTPT
NOGOR
ROGOR
SIGMA
sSIGM1

HOKPMPOM
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NXSTP = XRANG / 2
NYSTP = YRANG / 4
CONTINUE
NOTPT = C

DO 20 IYSTP = 1,NYSTP
DO 10 IXSTP = 1, NXSTP

IF ( IOSIM.EQ.1 . AND.ICOUN.EQ.1 ) DSEED = 123457.D0

ICOUN = 2
CALL NORMAL RANDOM DEVIATE GENERATOROF IMSL

CALL GGNML ( DSEED, NOGOR, ROGCR )
COEF1 = ROGOR*SQRT (0.5)

CALL GGNML ( DSEED, NOGOR, ROGOR )
COEF2 = ROGOR *SQRT(0.5)

CALCULATE THE INTENSITY FUNCTION WITH ABOVE COEFFICIENTS

XLAM1 NOPNT / ( XRANG * YRANG )

XLAMB XLAM1 + SIGMA**2 * COEFl * COEF2
0
*

IF ( XLAMB.LT.0. ) XLAMB = O.
XNOPT = XLAMB * 8.
NOPT1 = XNOPT
IF ( NOPT1.GT.0 ) THEN
NOSUS = NOPT1 * 2
CALL GGUBS ( DSEED, NOSUS, RSCLE )
XBCOR = ( IXSTP - 1 ) * 2.
YBCOR = ( IYSTP - 1 ) * 4.
DO 40 ILOOP = 1,NOPT1
IDOFN = ILOOP * 2 - 1
JDOFN = ILOOP * 2
IPOIN = NOTPT + ILOOP
IF ( IPOIN.GT.NOPNT ) THEN
NOTPT = NOPNT
GO TO 30

ENDIF
COORD (IPOIN, 1)
COORD (IPOIN, 2)
CONTINUE
NOTPT = NOTPT + NOPT1

ENDIF

ICOUN = ICOUN + 1

CONTINUE

CONTINUE

XBCOR + RSCLE (IDOFN) * 2
YBCOR + RSCLE (JDOFN) * 4.

CONTINUE

IF ( NOTPT.LT.NOPNT.OR.IYSTP.LT. (NYSTP~-1l) ) GO TO 60

Ir ( TOSIM.EQ.1 ) THEN
WRITE (6, 920)
DO 50 IPOIN = 1,NOTPT

WRITE (6,930) IPOIN, ( COORD (IPOIN, IDOFN), IDOFN=1,2 )

CONTINUE
ENDIF
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920 FORMAT(//,5X, 'COORD. OF POINTS GENERATED BY COX PROCESS',/,

* 5X, 'NO. X-COORD . Y-COORD.’,//)
930 FORMAT (5X,15,2(F10.3, 3X))

RETURN

END

SUBROUTINE PAREN (COORD, IOSIM )

SUBROUTINE PAREN EVALUATE THE INTENSITY FUNCTION
OF THE COX PROCESS USING SYMMETRIC NORMAL
DISTRIBUTION FUNCTION FOR PARENT - DAUGHTER MODEL.
( CURRENTLY, NOT AVAILABLE )

IMPLICIT DOUBLE PRECISION (A-H,0-2Z)
COMMON/CONTR/NDOFN, DSTEP, NTOTL, NOPNT, NOSIM, NSTEP,
* NTOVL, IMAPP, IOPNT, XBOT, XRANG, YBOT,
* YRANG, KXCLS, KYCLS, KTCLS, ANGLE, NOANG
DIMENSION COORD (NOPNT, 2), RSCLE (80)

DIMENSION HCOOR (10, 2) ,VALUE (50, 40)

total no. of parent points

HCOOR (i, 3j) : i
: ndofn

3

no. of simulations

VALUE (i, j) : %
: no. of steps

3

TWOPI = 6.28318
XRAN1 = 14.
YRAN]1 = 14.

IFr ( IOSIM.EQ.1l) READ (5,*) NOPAR, NOSON, STDEV, DISTL, PADLL

CALCULATE THE INTENSITIES WITH POISSON DISTRIBUTION
OF THE DATA

IF ( IOSIM.EQ.1 ) READ (5,*) DSEEP, MAITN

1 CONTINUE
JPOIN = 0
MODPT = O
NODAU = 2
NOITN = 0

10 CALL GGUBS ( DSEEP, NODAU, RSCLE )
NOITN = NOITN + 1
IF ( NOITN.GT.MAITN ) GO TO 1

GENERATE THE PARENT POINTS

HCORX = RSCLE (1) * XRAN1l

HCORY = RSCLE (2) * YRAN1

HCOXX = HCORX * 1.5 + 5.5

HCOYY = HCORY - 5.5

HCOR1 = 0.76 * HCOXX - 0.64 * HCOYY
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HCOR2 = 0.64 * HCOXX + 0.76 * HCOYY
IF ( HCOR1.LE.XBOT.OR.HCOR1.GE.XRANG ) GO TO 10
IF ( HCOR2.LE.YBOT.OR.HCOR2.GE.YRANG ) GO TO 10

IF ( MODPT.GT.O0 ) THEN
DO 100 I = 1, MODPT
PADIS = SQRT ( (HCORX~-HCOOR (X, 1)) **2+4 (HCORY-HCOOR (I, 2) ) **2 )
IF ( PADIS.LE.PADLL ) GO TO 10
CONTINUE
ENDIF

MODPT = MODPT + 1
HCOOR (MODPT, 1) = HCORX
HCOOR (MODPT, 2) = HCORY
IF ( MODPT.LT.NOPAR ) GO TO 10

GENERATE THE DAUGHTER POINTS

CONTINUE
CALL GGUBS ( DSEEP, 2, RSCLE )

COORX = RSCLE (1) * XRAN1

COORY = RSCLE (2) * YRAN1

CORXX = COORX * 1.5 + 5.5

CORYY = COORY - 5.5

CORX2 = 0.76 * CORXX - 0.64 * CORYY
CORY2 = 0.64 * CORXX + 0.76 * CORYY

IF ( CORX2.LE.XBOT.OR.CORX2.GE.XRANG ) GO TO 20
IF ( CORY2.LE.YBOT.OR.CORY2.GE.YRANG ) GO TO 20
DO 30 IPOIN = 1, NOPAR

DSTRI = SQRT( (COORX-HCOOR (IPOIN,1))*%*2 4
* (COORY—~-HCOOR (IPOIN, 2) ) **2 )

IF ( IPOIN.EQ.1 ) DSMIN = DSTRI

IF ( DSTRI.LT.DSMIN ) DSMIN = DSTRI

CONTINUE

IF ( DSMIN.GT.DISTL ) GO TO 20

JPOIN = JPOIN + 1

COORD (JPOIN, 1) = COORX

COORD (JPOIN, 2) = COORY

IF ( JPOIN.LT.NOSON ) GO TO 20
WRITE (6, 920)

CONSTRUCT THE BIVARIARE NORMAL DISTRIBUTION FUNCTION

DO 40 ISTEP = 1, NSTEP

VALUE (IOSIM, ISTEP) = 0.

CONTINUE

DO 60 IPONT = 1, NOSON

DO 50 JPONT = 1, NOPAR

DISTS = SQRT( ( COORD (IPONT,1)-HCOOR (JPONT,1) )*#*2 4

* ( COORD (IPONT, 2) ~HCOOR (JPONT, 2) ) **2 )

ISTEP = DISTS / DSTEP
ISTEP = ISTEP + 1
IF ( ISTEP.GT.NSTEP ) ISTEP = NSTEP
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XMEAN = HCOOR (JPONT, 1)
YMEAN = HCOOR (JPONT, 2)
XVALL = ( COORD (IPONT,1) - XMEAN ) **2
YVALL = ( COORD (IPONT,2) - YMEAN ) *#2
FUNCT = EXP( -0.5%( XVAL1 + YVALL ) / STDEV#*#2 )
VALFT = FUNCT / ( TWOPI * STDEV**2 )

VALUE (IOSIM, ISTEP) = VALUE (IOSIM, ISTEP) + VALFT
CONTINUE
CONTINUE

IF ( IOSIM.EQ.1) THEN
DO 70 ISTEP = 1,NSTEP
DSTAS = ISTEP * DSTEP
WRITE (6,910) IOSIM,DSTAS,VALUE (I0SIM, ISTEF)
CONTINUE

ENDIF

DO 80 I = 1,NOPAR

J = I + NOSON

COORD (J,1) = HCOOR(I,1)

COORD (J,2) = HCOOR(I,2)

CONTINUE

WRITE (6, 920)

DO 90 I=1,NOPNT

CORX3 = COORD(I,1) * 1.5 + 5.5
CORY3 = COORD(I,2) - 5.5

CORX4 = CORX3 * 0.76 - CORY3 * 0.64
CORY4 = CORX3 * 0.64 + CORY3 * 0.76

COORD (I,1) = CORX4
COORD (I, 2) = CORY4
IF ( IOSIM.LE.5 ) THEN
WRITE (6,960) I, (COORD(I,J),J=1,2)
ENDIF
CONTINUE

WRITE (6, 920)

FORMAT (5X, 'SIM. = ',I5,5X,2(F15.7,5X) )
FORMAT (//)

FORMAT (5X, I5,5X,2(F15.7,3X) )

RETURN

END

SUBROUTINE SPECT ( NSTEP, NOPNT, XRANG, YRANG, COORD, IOSIM, DSTEP )

SUBROUTINE SPECT CALCULATES THE SPECTRAL DENSITY FUNCTION
AND DIRECTIONAL INTENSITY FUNCTION.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION COORD (39,2),RSCLE (60000),COOR1 (30000,2),
XINTE (200), YINTE (400)

IF ( IOSIM.EQ.1 ) THEN
REWIND 8
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READ (8, *) XCOF2, YCOF2, FMULT, XVARI, YVARI, IPRIN
ENDIF

COEFF = 3.14159
FREQL = COEFF / 2.
LYLEN =50

SUMMX = O.

SuMMY = 0.

MCOUN = 0

MMCNT = O

NOTPT = O

XRAN1 & YRAN1 ARE THE DIRECTIONAL RANGES OF THE MAP
SHOULD BE CHANGED ACCORDING TO A SPECIFIC MAP CONCERNED

XRAN1 22,

YRAN1 14.

IF ( IOSIM.EQ.1 ) JCUNT = O
XLAM1 = NOPNT / ( XRAN1l * YRAN1)
IF¥ ( IOSIM.GT.1 ) GO TO 100

X & Y-DIRECTIONAL SPECTRAL DENSITY FUNCTION
X-COOR & Y-COOR
DELOM = COEFF / LYLEN

DO 20 IXSTP = 1,10
XCOOR = FLOAT (IXSTP-1) * 3. + 1.5

MMCNT MMCNT + 1

SUMMX 0.

DO 10 KSTEP = 0, LYLEN

MCOUN = MCOUN + 1

OMEGA = -FREQL + KSTEP*DELOM

XSPEC = XCOF2 / ( COEFF * ( OMEGAA*2 + XCOF2#**2 ) )
INUMB = 1

IF ( IOSIM.EQ.1.AND.MCOUN.EQ.1 ) READ (8,*) DSEED
CALL GGUBS ( DSEED, INUMB, RSCLE )

THET1 = RSCLE(1) * 2. * COEFF

XOEF5 = SQRT (2.*XSPEC*DELOM) * COS (OMEGA*XCOOR + THET1 )
SUMMX = SUMMX + XOEF5

CONTINUE

XDENS = SUMMX * XVARI

XINTE (IXSTP) = XDENS

IF ( IXSTP.EQ.1l ) XDMAX = XDENS

IF ( IXSTP.EQ.1l ) MAXXD = 1

IF ( XDENS.GT.XDMAX ) THEN
XDMAX XDENS
MAXXD IXSTP

ENDIF
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IYysTP = 1,7

FLOAT (IYSTP-1)*3. + 1.5
o.

KSTEP = 0, LYLEN

-FREQL + KSTEP*DELOM
YCOF2 / ( COEFF * ( OMEGA**2 + YCOF2**2 ) )
1

CALL GGUBS ( DSEED, INUMB, RSCLE )

THET2
YOEFS
SUMMY

CONTINUE

YDENS

RSCLE(1) * 2. * COEFF
SORT (2. *YSPEC*DELOM) * COS (OMEGA*YCOOR + THET2 )
SUMMY + YOEF5

SUMMY * YVARI

YINTE (IYSTP) = YDENS
IF ( IYSTP.EQ.1 ) YDMAX = YDENS
IF ( IYSTP.EQ.1 ) MAXYD = 1
IF ( YDENS.GT.YDMAX ) THEN
YDMAX = YDENS
MAXYD = IYSTP

ENDIF

CONTINUE

DO 700 IISTP =1, 15

CORNX = (IISTP-1.) * 3. + 1.5
CORNY = (IISTP-1.) * 3. + 1.5
XINT1 = XINTE (IISTP) / XDMAX
YINT1 = YINTE (IISTP) / YDMAX

WRITE (6, 710) IISTP, CORNX, CORNY,
* XINT1l, YINT1

700 CONTINUE
710 FORMAT (5X,'STEP COORD X- ¥- ’,I5,4F10.4)

DENMX
DENMX1

READ (9,
WRITE (6, 940) XDMAX, MAXXD, YDMAX, MAXYD
CONTINUE
NOGPT = XRAN1l * YRANl1l * DENMX
NOGP2 = NOGPT * 2

IFr ( IOSIM.EQ.1 ) READ (8,*) DSEEl
CALL GGUBS ( DSEE1l,NOGP2,RSCLE )
JOGPT = 1

DO 110 IOGPT = 1, NOGPT

IDOFN
JDOFN

CORX1
CORY1
CORX2

-
=
-
=

*

( XDMAX + YDMAX ) * FMULT
XDMAX + YDMAX

) DENCR

IOGPT * 2 - 1
IOGPT * 2

RSCLE (IDOFN) * XRAN1 + 5.5
RSCLE (JDOFN) * YRANl - 5.5
0.76 * CORX1 - 0.64 * CORY1
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CORY2 = 0.64 * CORX1l + 0.76 * CORY1l
IF ( CORX2.LE.0..OR.CORX2.GE.XRANG ) GO TO 110
IF ( CORY2.LE.O..OR.CORY2.GE.YRANG ) GO TO 110
COOR1 (JOGPT, 1) = RSCLE (IDOFN) * XRAN1
COOR1 (JOGPT, 2) = RSCLE (JDOFN) * YRAN1
JOGPT = JOGPT + 1
110 CONTINUE
WRITE (6,950) JOGPT - 1

THINNING PROCESS
DENST = 39. / ( 25. * 17. )
JNUMB = 2

DO 120 IOGPT = 1,JOGPT

XTRI1 = COOR1 (IOGPT, 1)

YTRI1 = COORI1 (IOGPT, 2)

XADD1 = SQRT( XTRI1**2 + YTRI1**2 )
IXADD = XADD1l * 0.33

IXADD = IXADD + 1

IYADD = YTRI1 * 0.333

IYADD = IYADD + 1

XXDEN = XINTE (IXADD)

YYDEN = YINTE (IYADD)

IF ( YYDEN.LE.O..OR.XXDEN.LE.O. ) GO TO 120

XXDEN = XXDEN / XDMAX
YYDEN = YYDEN / YDMAX
XYDEN = XXDEN + YXYDEN

CALL GGUBS ( DSEEl, JNUMB, RSCLE )

IF ( XYDEN.GE.DENCR ) THEN
NOTPT = NOTPT + 1
IF ( NOTPT.GT.NOPNT ) GO TO 150
CX1 = COOR1 (IOGPT,1) + 5.5
CY1 = COOR1 (IOGPT,2) - 5.5
COORD (NOTPT, 1) = CX1*0.76 - CY1*0.64
COORD (NOTPT,2) = CX1*0.64 + CY1*0.76

ENDIF

120 CONTINUE

150 CONTINUE
WRITE (6, 910) IOGPT
IF ( IOSIM.LE.IPRIN ) THEN
WRITE (6, 920)
DO 160 IOPNT = 1, NOPNT
WRITE (6, 930) IOPNT, ( COORD (IOPNT, IDOFN),IDOFN = 1,2 )
160 CONTINUE
ENDIF

910 FORMAT(5X,’ NO. OF ITERATIONS = ',1I15)

920 FORMAT (//,5X,’ COORD. OF POINTS GENERATED BY COX PROCESS',/,
* 5X, ' NO. X-COORD . Y-COORD.’,//)

930 FORMAT (5X, I5,2(F10.3,3X) )

940 FORMAT (//,5X, MAX. X-DIR. INTENSITY = ',F12.5,’ AT ’,1I5,
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* /,5X,’MAX. Y-DIR. INTENSITY = ’',F12.5,’' AT ',15,//)
950 FORMAT(//,5X,’ TOTAL NO. OF POINTS GENERATED IN SPECT. = ’',1I5)

RETURN

END

PROGRAM HIERA
C
CCCCcccceccceeccccecceccececcececccceccecececceccceccececcececcccceccccececcceecce

c c
c PROGRAM HIERA EVALUATES THE HIERARCHICAL FIBER c
c ( LINE - SEGMENT ) PROCESS WHICH IS A REALIZATION c
c OF THE GIVEN MAP. c
c c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeee
c IMPLICIT DOUBLE PRECISION (A-H,O-2)
COMMON/CONFL/NOPNT, NOFPT, NOLPT, XRANG, YRANG, XBOT, YBOT,NOSIM,
* NTOTL, NDOF2, NSTEP, DSTEP , NDOFN, SIGMA, TSTEP , MAXXW,
* MAXYW, IOPTN, JOPTN, LOPTN, DFACT
DIMENSION KK(20000), AA(30000), TITLE (20)
c
c INITIAL SETS OF THE DIMENSION
c
NRVAR = 30000
NIVAR = 20000
NDOFN = 2
NDOF2 = NDOFN * 2
DFACT = O.
c
READ (5,800) TITLE
WRITE (6,800) TITLE
c
10 CONTINUE
c
c READ VARIABLES
c
c NOPNT : NO. OF TOTAL MID POINTS IN A MAP
c NOFPT : NO. OF TOTAL MID POINTS IN A FORMER SET
c NOLPT : NO. OF TOTAL MID POINTS IN A LATTER SKET
c NOSIM : NO. OF SIMULATIONS
c NSTEP : NO. OF STEPS IN CALCULATING THE STATISTIC
c DSTEP : DISTANCE STEP SIZE
c SIGMA : STD. DEV. OF THE LINE - KERNEL FUNCTION
c TSTEP : UNIT OF SEGMENT IN LINE - KERNEL FUNCTION
c OR THE PERTURBATION DISTANCE IN INDEPENDENCE TEST
c
READ (5,*) NOPNT,NOFPT,NOLPT, NOSIM, NSTEP,DSTEP, SIGMA, TSTEP
WRITE (6, 910) NOPNT,NOFPT, NOLPT, NOSIM, NSTEP,DSTEP, SIGMA, TSTEP
c
c READ BOUNDARY OF THE SIMULATION REGION
c
READ (5,*) XBOT,XRANG, YBOT, YRANG
XTOP = XBOT + XRANG
YTOP = YBOT + YRANG
WRITE (6, 920) XBOT,XTOP, YBOT, YTOP
c

MAXXW = 2
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JOPTN, LOPTN

IF ( JOPTN.GE.3 ) THEN
READ (5,*) XWIND, YWIND,DFACT
MAXXW = XRANG / XWIND + 1
MAXYW = YRANG / YWIND + 1

)

)
)

ENDIF

DYNAMIC ALLOCATION
NR1 : COORD : COORD. OF THE TOTAL TRACES ( 4 FOR EACH TRACE )
NR2 = CORFB : COORD. OF THE FORMER SET ( "
NR3 = SECON : SLOPE OF ALL FIBERS ( NO. OF FIBERS )
NR4 = TRACE TRACE LENGTHR OF THE FORMER SET
NR5 = CORLF COORD. OF THE LATTER SET ( "
NR6 = COORL WORKING ARRAY FOR THE LATTER SET (2 FOR TRACE)
NR7 = COORF : WORKING ARRAY FOR THE LATTER SET ( "
NR8 = SVALU : VALUES OF THE STATISTIC ( NOSIM, NSTEP )
NR9 = CPFST : CENTER POINTS OF THE WHOLE SET ( NOPNT,2 )
NR10= CPSND : CENTER POINTS OF LATTER SET ( NOLPT,2 )
NR1ll= DENTY INTENSITY VARIATION OF LATTER SET ( JOPTN=2 )

NTOTL = NDOFN * NOPNT

NTOT2 = NDOF2 * NOPNT

NTFPT = NDOF2 * NOFPT

NTLPT = NDOF2 * NOLPT

NOSAS = NOSIM * NSTEP

NOWIN = MAXXW * MAXYW

NR1 = 1

NR2 = NR1 + NTOT2

NR3 = NR2 + NTFPT

NR4 = NR3 + NOPNT

NRS = NR4 + NOFPT

NR6 = NRS + NTLPT

NR7 = NR6 + NOLPT * 2

NR8 = NR7 + NOFPT * 2

NRS = NR8 + NOSAS

NR10 = NR9 + NOPNT * 2

NR11l = NR10 + NOLPT * 2

NR12 = NR1l1l + NOWIN

NIl = 1

NRTOT = NR12 - 1

NITOT = NIl - 1

IERRO = 0

WRITE (6, 930) NRTOT, NRVAR

IF¥ ( NRVAR.GT.NRTOT ) GO TO 20
WRITE (6, 940)

IERRO = IERRO + 1

CONTINUE

WRITE (6, 950) NITOT, NIVAR

IF ( NIVAR.GT.NITOT ) GO TO 30
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WRITE (6, 960)
IERRO = IERRO + 1
30 CONTINUE
IF ( IERRO.GT.O ) STOP
c
(o INITIALIZE
(o
DO 40 IVARI = 1, NRVAR
40 AA(IVARI) = O.
DO 50 IVARI = 1,NIVAR
50 KK(IVARI) = 0
c
(o] CALL MAIN
c
CALL MAINS ( AA(NR1l ), AA(NR2 ), AA(NR3 ), AA(NR4 ), AA(NR5 ),
* AA(NR6 ), AA(NR7 ), AA(NR8 ), AA(NRY ), AA(NR1O),
* AA(NR11l) )
c
800 FORMAT (20A4)
910 FORMAT(//,5X,’'NO. OF TOTAL MID POINTS IN A MAP =',T60, 15,
* /,5X,’NO. OF TOTAL MID POINTS IN A FORMER SET =’,T60, 15,
* /.5X,’ NO. OF TOTAL MID POINTS IN A LATTER SET =',T60, 15,
* /.5X,'NO. OF SIMULATIONS =',T60, I5,
* /,5X,’NO. OF INTERPRETATION STEPS =',T60, 15,
* /,5X,’DISTANCE STEP SIZE =',T60,rF6.3,
* /,5X,'STD. DEV. OF LINE-KERNEL FUNCTION =’,T60,r6.3,
* /,5%, ' UNIT OF SEGMENT IN LINE-KERNEL FUNCTION =’,T60,F6.3)
920 FORMAT(//,5X,’ BOUNDARY OF THE SIMULAITON',
* /,7X,’'X~-DIR. BOUNDARY ( FROM : TO ) = ',T60,2(r10.3,2x),
* /.7X,’Y-DIR. BOUNDARY ( FROM : TO ) = ’,T60,2(ri0.3,2x) )
930 FORMAT (//,5X, ' REAL STORAGE REQUIRED = ',15,
* /,5X,’ REAL STORAGE SPECIFIED =',15,/)
940 FORMAT(//,5X, ' *** INCREASE STORAGE FOR REAL ARRAYS #*##%’)
950 FORMAT(//,5X,’ INTEGER STORAGE REQUIRED = ',I5,
* /,5X,’ INTEGER STORAGE SPECIFIED = ',I5,/)
960 FORMAT(//,5X,’ *#** INCREASE STORAGE FOR INTEGER ARRAYS ###%’)
c
STOP
END
cC
C
SUBROUTINE MAINS ( COORD, CORFB, SECON, TRACE, CORLF, COORL,
* COORF', SVALU, CPFST, CPSND, DENTY )
o]
c SUBROUTINE MAINS CONTROLS THE MAIN OPTION
c
o IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON/CONFL/NOPNT, NOFPT, NOLPT, XRANG, YRANG, XBOT, YBOT, NOSIM,
* NTOTL, NDOF2, NSTEP, DSTEP, NDOFN, SIGMA, TSTEP , MAXXN,
* MAXYW, IOPTN, JOPTN, LOPTN, DFACT
DIMENSION COORD (NOPNT,d4), CORFB (NOFPT,4), SECON (NOPNT),
® CORLF (NOLPT, 4) , COORL (NOLPT, 2), TRACE (NOFPT),
» COORF (NOFPT, 2), CPFST(NOPNT,2), CPSND (NOLPT, 2)
DIMENSION SVALU (NOSIM, NSTEP), DENTY (MAXXW, MAXYW)
Cc
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READ OPTION VARIABLES

H
S
2

MAIN OPTION FOR THE POINT PROCESS
DO NOT ENTER THE POINT PROCESS )
BIVARIATE KERNEL FUNCTION METHOD )
INDEPENDENCE TEST FOR SETS )
)
)

ORIENTATION CORRELATION OPTION
MLE FOR ORIENTATION DATA

o~
bW o

¢ MAIN OPTION FOR THE FIBER PROCESS
: DO NOT ENTER THE FIBER PROCESS )
: MLE FOR LINE - KERNEL FUNCTION )
: MLE FOR NEAREST NEIGHBOR FIBERS )
: SIMULATION OF SET 2 WITH L - K )
SIMULATION OF SET 2 WITH NN F )

—~ o s
waHog

.o

: ANALYSIS OPTION
: CALCULATE BIVARIATE SECOND MOMENT )
: CALCULATE UNIVARIATE SECOND MOMENT )

o~

e NeNeNeNeNeNeNeNeNe NeNeNs e N NeNe Ne NN e
t Sy
g g
Nl—';

WRITE (6,910) IOPTN, JOPTN, LOPTN

FIRST, SIMULATE THE FORMER SET USING POINT PROCESS

Q00

IF ( IOPTN.EQ.0 ) GO TO 99
GO TO ( 10, 20, 30, 30 ), IOPTN

IOPTN = 1 : BIVARIATE KERNEL FUNCTION METHOD

nnn

10 CONTINUE
GO TO 90

IOPTN = 2 : BIVARIATE INDEPENDENCE TEST

(e NeNe!

20 CONTINUE
CALL INDEP ( COORD, CORFB, CORLF, SVALU,CPFST, CPSND )
GO TO 90

IJOPTN = 3 : ORIENTATION CORRELATION OPTION ( BIVARIATE )
4 : MLE FOR ORIENTATION DATA

(oo NeNe]

30 CONTINUE
CALL ORINT ( COORD, TRACE, SECON )
90 CONTINUE

{ 1 : LOG DISTRIBUTION )
( 2 : EXPONENTIAL DISTRIBUTION )

Qo0

CALL LENGT ( KOPTN, COORF )
99 CONTINUE

IF ( JOPTN.EQ.O0 ) RETURN

SECOND, SIMULATE THE LATTER SET USING FIBER PROCESS

aaa
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IF ( JOPTN.LE.2 ) READ (5,*) XLAMO
DO 60 IOPNT = 1, NOFPT

READ (5,*) ( COORD (IOPNT, IDOFN),

60 CONTINUE

GO TO ( 100, 200, 300, 300 ), JOPTN

JOPTN = 1 : MLE OF LINE - KERNEL FUNCTION

100 CONTINUE

IDOFN = 1, NDOF2 )

CALL KFMLE ( COORD, CORFB, SECON, TRACE, CORLF, COORL, SVALU,

* XLAMO )
RETURN

JOPTN = 2

200 CONTINUE
CALL NNMLE ( COORD,
RETURN

JOPTN

JOPTN

300 CONTINUE

: MLE OF NEAREST NEIGHBOR FIBERS

TRACE, SECON, XLAMO )

3 : SIMULATION OF SET 2 WITH L ~ K FUNCTION

4 : SIMULATION OF SET 2 WITH N.N. FUNCTION

CALL FIBRE ( COURD,CPFST,SECON, TRACE, CPSND, COORL, SVALU,

* DENTY )
RETURN

910 FORMAT(//,5X, 'MAIN OPTIONS :',

/. 9%,
/. 9%,
/fgx'
/, 9%,
/., 9%,
//,7%,
/ngl
/ngl
/'gx’
/, 9%,
/. 9%,
//,7%,’
/ngl
/lgxl

D N
-
(=]

~

.
.

-~

~

~

AAAAAEAAAA
eWNHOHMWUNKH

~

g

* % % % F % % % % F % % X * %

N

-
-~

END

/,7X,'MAIN OPTION FOR THE POINT PROCESS
DO NOT ENTER THE POINT PROCESS
BIVARIATE KERNEL FUNCTION METHOD

INDEPENDENT TEST FOR SETS

CORRELATION MEASURE OF ANGLE

MLE OF ORIENTATION DATA

N OPTION FOR THE FIBER PROCESS
NOT CONSIDER THE FIBER PROCESS
: MLE OF LINE - KERNEL FUNCTION
MLE OF NEAREST NEIGHBOR FIBERS
SIMULATION WITH L - K FUNCTION
SIMULATION WITH N. N. FUNCTION
ALYSIS OPTION FOR POINT PATTERN
BIVARIATE SECOND MOMENT OPTION
UNIVARIATE SECOND MOMENT OPTION

= ’,T60,15,

SUBROUTINE FIBRE ( COORD,CPFST, SECON, TRACE, CPSND, COORL, SVALU,
* DENTY )

SUBROUTINE FIBRE EVALUATES THE HIERARCHICAL FIBER MODEL
WITH LINE -~ KERNEL FUNCTION.
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IMPLICIT DOUBLE PRECISION (A-H,0-2)

COMMON/CONFL/NOPNT, NOFPT, NOLPT, XRANG, YRANG, XBOT, YBOT, NOSIM,
* NTOTL, NDOF2, NSTEP, DSTEP, NDOFN, SIGMA, TSTEP , MAXXW,

* MAXYW, IOPTN, JOPTN, LOPTN, DFACT

DIMENSION COORD (NOPNT, 4), CPFST(NOPNT,2), SECON (NOPNT),
* CPSND (NOLPT, 2), COORL (NOLPT, 2), TRACE (NOFPT)

DIMENSION SVALU (NOSIM, NSTEP), RSCLE (2)
DIMENSION COORW(138,2), DENTY (MAXXW, MAXYW)

SIMULATE THE SECOND SET USING THE DATA FROM MLE

JITRT = 1
TWOPI = 6.28318

NPLUl = NOFPT + 1

NPLU2 = NOFPT + NOLPT

XLAM2 = NOLPT / ( XRANG * YRANG )

STORE THE MID POINTS DATA FOR SECOND MOMENT ANALYSIS

DO 5 IOPNT = 1, NOFPT

XCOOR = ( COORD (IOPNT, 1) + COORD (IOPNT,3) ) / 2.
YCOOR = ( COORD (IOPNT,2) + COORD(IOPNT,4) ) / 2
CPFST (IOPNT,1) = XCOOR

CPFST (IOPNT,2) = YCOOR

CONTINUE

READ MID POINT OF THE LATTER SET ( MAPPED DATA )

DO 10 IOPNT = NPLU1l, NPLU2
READ (5,*) ( COORD (IOPNT,IDOFN), IDOFN=1,NDOr2)

XCOOR = ( COORD (IOPNT,1) + COORD (IOPNT,3) ) / 2.
YCOOR = ( COORD (IOPNT, 2) + COORD(IOPNT,4) ) / 2.
JOPNT = IOPNT - NOFPT

COORW (JOPNT, 1) = XCOOR

COORW (JOPNT, 2) = YCOOR

CONTINUE

FIND INTENSITY VARIATION WITH BIVARIATE NORMAL DENSITY FUNCTION

MAXXW = XRANG / XWIND + 1
MAXYW = YRANG / YWIND + 1
XWIND = XRANG / ( MAXXW - 1. )

YWIND = YRANG / ( MAXYW - 1. )
WRITE (6, 950) XWIND, YWIND, DFACT

DO 20 IXWIN = 1, MAXXW
DO 20 IYWIN = 1, MAXYW
DENTY (IXWIN, IYWIN) = O.
CONTINUE

JITRT = 1

DO 30 IOPNT = 1, NOLPT
XCOOR COORW (IOPNT, 1)
YCOOR COORW (IOPNT, 2)
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IXWIN = XCOOR / XWIND + 1
IYWIN = YCOOR / YWIND + 1
JOPTN = 3 : SIMULATION WITH L - K FUNCTION

IF ( JOPTN.EQ.3 ) THEN
CALL LKERN (JITRT, XCOOR, YCOOR,TRACE, VALUE, COORD, SECON,

» NTOFB)

JITRT = 2

DENTY (IXWIN, IYWIN) = DENTY (IXWIN, IYWIN) +
* VALUE * 0.35 / FLOAT(NOLPT) + 0.65 / (22.*14.)
ELSE

JOPTN = 4 : SIMULATION WITH N. N. FUNCTION

CALL NEARF (JITRT, XCOOR,YCOOR,FDIST, COORD, TRACE,6 SECON)

JITRT = 2

DENTY (IXWIN, IYWIN) = DENTY (IXWIN, IYWIN) +
* EXP( -0.5 * (FDIST/SIGMA)**2 ) / ( SIGMA*SQRT (TWOPI)
*

* FLOAT (NOLPT) ) * 0.35 + 0.65 / (22.*14.)
ENDIF

IF ( IOPNT.EQ.l1 ) DENMX = DENTY (IXWIN, IYWIN)
IF ( DENTY (IXWIN, IYWIN) .GT.DENMX ) DENMX = DENTY (IXWIN, IYWIN)

CONTINUE
DENMX = DFNMX * DFACT
KOPTN = 1

SIMULATION STEP

NPSIM = NOSIM - 1
IF ( NPSIM.EQ.O ) RETURN

DO 50 IOSIM = 1, NPSIM
Ir¥ ( IOSIM.LE.5 ) WRITE(6,910) IOSIM

SIMULATION BY NORMAL DISTRIBUTION FUNCTION

ICONT

0
KCONT 0

CONTINUE
KCONT = KCONT + 1

GENERATE RANDOM POINT WHICH REPRESENTS THE MID POINT OF THE
LATTER SET.

NOSUS = 2

CALL RANDF ( NOSUS, RSCLE, KOPTN )
KOPTN = 2

XCOOR = RSCLE (1) * XRANG

YCOOR

RSCLE (2) * YRANG
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IXWIN = XCOOR / XWIND
IYWIN = YCOOR / YWIND
IXWIN = IXWIN + 1
IYWIN = IYWIN + 1
VALUE = DENTY (IXWIN, IYWIN)

CALL RANDF ( 1,RSCLE,KOPTN )

IFr ( KCONT.GT.10000 ) RETURN

IF ( RSCLE(1l).GT. (VALUE/DENMX) ) GO TO 220
ICONT = ICONT + 1

COORL (ICONT, 1)
COORL (ICONT, 2)

= XCOOR

= YCOOR

IF (IOSIM.LE.5) WRITE(6,920) ICONT, COORL(ICONT,1), COORL(ICONT, 2)
IF ( ICONT.LT.NOLPT ) GO TO 220

WRITE (6, 930) KCONT

CALCULATE APPROPRIATE SECOND MOMENT
LOPTN = 1 : BIVARIATE SECOND MOMENT OPTION
2 : UNIVARIATE SECOND MOMENT OPTION

IF ( LOPTN.EQ.2 ) THEN
CALCULATE THE SECOND MOMENT

CALL SMSTT ( IOSIM, COORL, SVALU )
ELSE

CALCULATE THE BIVARIATE SECOND MOMENT

DO 230 KOPNT = 1, NOFPT
XCOOR = CPFST (KOPNT, 1)
YCOOR = CPFST (KOPNT, 2)
CALL BVSMM ( XCOOR, YCONR, COORL, SVALU, IOSIM )
CONTINUE
ENDIF

CONTINUE
CALCULATE THE SECOND MOMENT FOR REAL DATA SET 2
IOSIM = NOSIM

IF ( LOPTN.EQ.2 ) THEN
CALL SMSTT ( IOSIM, COORW, SVALU )
ELSE

CALCULATE THE BIVARIATE SECOND MOMENT FOR REAL DATA SET 2

DO 240 KOPNT = 1, NOFPT
XCOOR = CPrST (KOPNT, 1)
YCOOR = CPFST (KOPNT, 2)
CALL BVSMM ( XCOOR, YCOOR, COORW, SVALU, IOSIM )
CONTINUE
ENDIF
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CALCULATE THE CUMULATIVE K FUNCTION

DO 260 IOSIM

1, NOSIM

DO 250 ISTEP = 1, NSTEP

ADDTV

= 0.

IF ( ISTEP.EQ.1 ) GO TO 250

KSTEP
ADDTV

= ISTEP - 1
= SVALU (IOSIM, KSTEP)

SVALU (I0OSIM, ISTEP) = SVALU(IOSIM, ISTEP) + ADDTV
250 CONTINUE
260 CONTINUE

CALL KSTAT ( SVALU )

MONTE

- CARLO STATISTICS

WRITE (6, 890)

DO 90
CSTAT
RSTAT
Do 80
JSTAT
XSTAT
ZSTAT
DO 70

IOSIM = 1, NOSIM
= 0.

0.

ISTEP = 1, NSTEP
0

0. -
SVALU (IOSIM, ISTEP)
JOSIM = 1, NOSIM

IF ( JOSIM.EQ.IOSIM ) GO TO 70

XSTAT

= XSTAT + SVALU(JOSIM, ISTEP)

70 CONTINUE

XSTAT
CSTAT
RSTAT

XSTAT / ( NOSIM - 1 )
( ZSTAT - XSTAT )#*%2
RSTAT + CSTAT

80 CONTINUE
IF ( IOSIM.EQ.1 ) THEN
RMINV = RSTAT

RMAXV

ENDIF

IF ( TOSIM.NE.NOSIM.AND.RSTAT.LE.RMINV ) RMINV
IF ( IOSIM.NE.NOSIM.AND.RSTAT.GE.RMAXV ) RMAXV

RSTAT

WRITE (6,980) IOSIM, RSTAT
90 CONTINUE
WRITE (6, 990) RMINV, RMAXV, RSTAT

890 FORMAT (//,5X, MONTE - CARLO TEST',//)
910 FORMAT (//,5X,’' SIMULATIONS OF THE SET 2 WITH LINE

*
*

/,5X,’ ITERATION STEP = ’,15,
//,9x, "X - COORD. Y -

920 FORMAT( 5X,I5,3X,2(rl5.7,3x) )
930 FORMAT(/ ,5X,’'NO. OF ITERATIONS = ‘,I5,//)
950 FORMAT (//,5X,’X-DIR. WINDOW WIDTH = ’',F10.5,

*

/,5%X,’'Y-DIR. WINDOW WIDTH = ' ,F10.5,

* /,5X, ' DENSITY FACTOR = ’,r10.5,
* // )
980 FORMAT( 5X,’STATISTIC',IS,’ = ‘,F15.3 )

990 FORMAT (//,5X, ’'MIN. VALUE OF STATISTIC

= ',F15%.3,

RSTAT
RSTAT

- KERNEL FT.',
COORD’ , //)
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* /,5X, "MAX. VALUE OF STATISTIC
* /.5X, 'MAPPED VALUE

‘,F15.3,
r,rl5.3 )

RETURN
END

SUBROUTINE SMSTT ( IOSIM, COORL, SVALU )

SUBROUTINE SMSTT EVALUATE SECOND-MOMENT STATISTIC OF
MAPPED DATA

IMPLICIT DOUBLE PRECISION (A-H,0-2Z)

COMMON/CONFL/NOPNT, NOFPT, NOLPT, XRANG, YRANG, XBOT, YBOT,NOSIM,
* NTOTL, NDOF2, NSTEP , DSTEP, NDOFN, SIGMA, TSTEP , MAXXW,
* MAXYW, IOPTN, JOPTN, LOPTN, DFACT

DIMENSION COORL (NOLPT, 2), SVALU(NOSIM, NSTEP)

NPSIM = NOSIM - 1
CNSTV 1.

DO 30 ISTEP = 1,NSTEP

SVALU (IOSIM, ISTEP) = 0.
CONTINUE
CALCULATE WEIGHTING COEFFICIENT w(X,u)
DO 20 IPOIN = 1, NOLPT
XCOOR = COORL (IPOIN, 1)
YCOOR = COORL (IPOIN, 2)
DIST1 = AMIN1 ( XCOOR, (XRANG - XCOOR) )
DIST2 = AMIN1 ( YCOOR, (YRANG - YCOOR) )
SQODIS = DIST1#*%*2 4 DIST2**2
DO 10 JPOIN = 1,NOLPT
IF ( JPOIN.EQ.IPOIN ) GO TO 10
XCOR1 = COORL (JPOIN, 1)
YCOR1 = COORL (JPOIN, 2)
DISTO = SQRT ( (XCOOR-XCOR1) *#24 (YCOOR-YCOR1) *#%2)
WEIGT = 0.
ISTEP = DISTO / DSTEP + 1
IF ( ISTEP.GT.NSTEP ) GO TO 10
IF ( DISTO**2 LE.SQDIS ) THEN
WEIGT = 1.
ELSE
DIST3 = ACOS( CNSTV * DIST1 / DISTO )
DIST4 = ACOS( CNSTV * DIST2 / DISTO )
WEIGT = 0.75 - ( DIST3 + DIST4 ) / 6.28318
ENDIF

WEIGT = XRANG * YRANG / ( WEIGT * (NOLPT)**2 )
CALCULATE K FUNCTION

SVALU (YOSIM, ISTEP) = SVALU (IOSIM, ISTEP) + WEIGT

DU
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10 CONTINUE
20 CONTINUE

10

15

RETURN

END

SUBROUTINE KSTAT ( SVALU )

SUBROUTINE KSTST INTERPRET THE K FUNCTION

IMPLICIT DOUBLE PRECISION (A-H,60-2)

COMMON /CONFL/NOPNT, NOFPT, NOLPT, XRANG, YRANG, XBOT, YBOT,NOSIM,

*
*

NTOTL, NDOF2, NSTEP, DSTEP, NDOFN, SIGMA, TSTEP , MAXXW,
MAXYW, IOPTN, JOPTN, LOPTN, DFACT

DIMENSION SVALU(NOSIM, NSTEP)

FIND MIN. & MAX. VALUE OF SIMULATED DATA

AREAT
XLAMB
XLAM2

XRANG * YRANG
NOLPT / AREAT
XLAMB**2

WRITE (6, 910)

NPSIM
PHIVU

DO 20
STOTL
SMINV
SHAXV
STOTL
DO 10

NOSIM - 1
3.141592

ISTEP = 1,NSTEP

0.

SVALU (1, ISTEP)
SVALU (1, ISTEP)
SVALU (1, ISTEP)
IOSIM = 2,NPSIM

IF ( SVALU(IOSIM, ISTEP) .LT.SMINV ) SMINV = SVALU(IOSIM, ISTEP)
IF ( SVALU(IOSIM, ISTEP) .GT.SMAXV ) SMAXV = SVALU(IOSIM, ISTEP)

STOTL = STOTL + SVALU(IOSIM, ISTEP)
CONTINUE
SAVRG = STOTL / NPSIM

MAPPED PATTERN

CONTINUE

SMAPP

= SVALU (NOSIM, ISTEP)

STABILIZE THE K VALUE

DSTNS
DSTS2
SMINV
SMAXV
SAVRG

DSTEP * ISTEP

DSTNS *+%2

SMINV - PHIVU*DSTS2
SMAXV - PHIVU*DSTS2
SAVRG - PHIVU*DSTS2




-235-
SMAPP = SMAPP - PHIVU*DSTS2
(o]
WRITE (6, 920) DSTNS, SMINV, SMAXV. SAVRG, SMAPP
20 CONTINUE
o]
910 FORMAT (//, 7X,’ INHOMOGENEOUS POISSON POINT PROCESS’, /,
* /, 71X, ' SECOND-MOMENT MEASUREMENT STATISTIC',//,
* 3X, 'DISTANCE MIN. VALUE MAX. VALUE’,
* 2X, ' AVERAGE MAPPED r1/)
920 FORMAT ( 4X,F9.3,3X,4(r12.4,2x) )
(o]
RETURN
END
cc
c
SUBROUTINE LKERN ( JITRT, XCOOR, YCOOR, TRACE, VALUE, COORD,
* SECON, NTOFB)
(o
(o] SUBROUTINE LKERN CALCULATE THE LINE KERNEL FUNCTION
(o OF THE FIBER PROCESS.
C AS AN ASSUMPTION, WE ONLY CONSIDER THE LINE LENGTH.
(o4
(o] IMPLICIT DOUBLE PRECISION ( A-H, 0-Z )
(o
COMMON/CONFL/NOPNT, NOFPT, NOLPT, XRANG, YRANG, XBOT, YBOT, NOSIM,
* NTOTL, NDOF2, NSTEP, DSTEP , NDOFN, SIGMA, TSTEP , MAXXW,
* MAXYW, IOPTN, JOPTN, LOPTN, DFACT
DIMENSION COORD (NOPNT,6 4), TRACE (NOFPT), SECON (NOPNT)
(o]
PITWO = 6.283185
VALUE = 0.
C
IF ( JITRT.EQ.1 ) THEN
C
(o4 READ END COORDINATES OF THE FORMER SET.
C COORD (IOPNT,1l) & COORD (IOPNT,2) : STARTING POINT
C COORD (IOPNT,3) & COORD (IOPNT,4) : END POINT
C
DO 10 IOPNT = 1, NOFPT
IF ( COORD (IOPNT,1l) .GT.COORD (IOPNT,3) ) THEN
CORXP = COORD (IOPNT, 3)
CORYP = COORD (IOPNT, 4)
COORD (IOPNT, 3) = COORD (IOPNT, 1)
COORD (IOPNT,4) = COORD (IOPNT, 2)
COORD (IOPNT,1) = CORXP
COORD (IOPNT, 2) = CORYP
ENDIF
C
[ CALCULATE THE LINE EQUATION FOR THE GIVEN FIBER
(o4 y=8secod * (x - Xi ) + Yi
Cc trace = trace length
(o

SECOD = ( COORD (IOPNT,d4) - COORD (IOPNT,2) ) /
* ( COORD (IOPNT,3) - COORD (IOPNT,1) )
SECON (IOPNT) = SECOD
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TRACE (IOPNT) = SQRT( (COORD (IOPNT,3) - COORD (IOPNT,1))**2 4
* (COORD (IOPNT, 4) -~ COORD (IOPNT,6 2) ) **2 )
10 CONTINUE
ENDIF

LOOKING FOR A DISTANCE BETWEEN FIBER AND DATA POINT

NTOFB = 0

DO 20 IOPNT = 1, NOFPT
FTLEN = TRACE (IOPNT)

NITER = FTLEN / TSTEP

IF ( NITER.EQ.0 ) NITER =1
NTOFB = NTOFB + NITER

VALUl = 0.
DO 30 IITER = 1, NITER
TLITN = TSTEP * ( IITER - 1 ) + TSTEP / 2.

XTRPT = COORD (IOPNT,1) + TLITN * ( COORD (IOPNT,3) -
* COORD (IOPNT,1 ) ) / TRACE (IOPNT)

YTRPT = COORD (IOPNT,2) + TLITN * ( COORD (IOPNT,4) -
* COORD (IOPNT, 2) ) / TRACE (IOPNT)

IF ( NITER.EQ.1 ) THEN
XTRPT = ( COORD (IOPNT,3) + COORD (IOPNT,1) ) / 2.
YTRPT = ( COORD (IOPNT, d4) + COORD (IOPNT,2) ) / 2.
ENDIF
DTRPT = SQRT( (XCOOR-XTRPT)**2 + (YCOOR-YTRET)**2 )
VALULl = VALUl + EXP( -0.5 * (DTRPT/SIGMA)**2 ) /
* ( SIGMA **2 * PITWO )
30 CONTINUE

CALCULATE THE TOTAL INFLUENCE OF THE FIBER PROCESS

VALUE = VALUE + VALUl
20 CONTINUE

RETURN
END
SUBROUTINE RANDF ( NOSUS, RSCLE, KOPTN )

SUBROUTINE RANDF GENERATE PSEUDO-RANDOM NUMBER
USING IMSL LIBRARY

DIMENSION RSCLE (NOSUS)

IF ( KOPTN.EQ.1 ) DSEED = SECNDS(0.0) * 100.0
CALL GGUBS ( DSEED, NOSUS, RSCLE )

RETURN
END
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SUBROUTINE LENGT ( KOPTN, COORF )
RETURN
END
SUBROUTINE INDEP (COORD,CORFB, CORLF,SVALU,CPFST,CPSND)
SUROUTINE INDEP EVALUATE THE INDEPENDENCE TEST
FOR BIVARIATE POINT PROCESS

USING EITHER SMALL PERTURBAION METHOD OR TOROIDAL SHIFT SCHEME

IMPLICIT DOUBLE PRECISION (A-H,60-Z)
COMMON/CONFL/NOPNT, NOFPT, NOLPT, XRANG, YRANG, XBOT, YBOT, NOSIM,

* NTOTL, NDOF2, NSTEP, DSTEP, NDOFN, SIGMA, TSTEP , MAXXW,
* MAXYW, IOPTN, JOPTN, LOPTN, DFACT

DIMENSION COORD (NOPNT, 4), CORFB (NOFPT,4), CORLF (NOLPT, 4),

* SVALU (NOSIM, NSTEP)

DIMENSION RSCLE (2)
DIMENSION CPFST(177,2), CPSND (138, 2)

INITIATE WITH THE ORIGINAL MID POINT DATA OF FORMER &
LATTER SETS

NPLUl = NOFPT + 1
NPLUZ = NOFPT + NOLPT

DO 10 IOPNT = 1, NOPBNT
READ (5,*) ( COORD (IOPNT,IDOFN), IDOFN=1,NDOF2 )
XCOOR = ( COORD (IOPNT,1) + COORD (IOPNT,3) ) / 2.
YCOOR = ( COORD (IOPNT,2) + COORD (IOPNT,4) ) / 2.
CPFST (IOPNT, 1) = XCOOR

CPFST (IOPNT, 2) = YCOOR

CONTINUE

CALCULATE 2nd MOMENT OF BIVARIATE POINT PROCESS
SELECT ANALYSIS OPTION

ISHFT = 1 : SMALL PERTURBATOIN TEST

ISHFT = 2 : TOROIDAL SHIFT TEST
READ (5,*) ISHFT

NPSIM = NOSIM - 1
DO 20 IOSIM = 1, NPSIM

DO 25 LSTEP = 1, NSTEP

SVALU (IOSIM,LSTEP) = 0.

CONTINUE

IFr ( ISHFT.EQ.1 ) THEN

DEFINE PERTURBATION DISTANCE AND USE RANDOM DISTANCE

I¥ ( IOSIM.EQ.1 ) DSEED = 123457.0
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CALL GGUBS ( DSEED, 2, RSCLE
XCOTR = RSCLE(l) * TSTEP * 2.
YCOTR = RSCLE(2) * TSTEP * 2,
DO 30 IPLUS = NPLUl, NPLU2
JPLUS = IPLUS - NOFPT
CPSND (JPLUS, 1) = CPFST(IPLUS,
CPSND (JPLUS, 2) = CPFST(IPLUS,
CONTINUE

ELSE

)
- TSTEP / 2.
- TSTEP / 2.

1) + XCOTR
2) + YCOTR

IF (IOSIM.EQ.l) DSEED = 123457.0

CALL GGUBS( DSEED, 2, RSCLE )
XCOTR = RSCLE (1) * XRANG
YCOTR = RSCLE (2) * YRANG
DO 40 IPLUS = NPLUl, NPLU2
JPLUS = IPLUS - NOFPT
CPSND (JPLUS, 1) = CPFST (IPLUS,
CPSND (JPLUS,2) = CPFST (IPLUS,
IF (CPSND (JPLUS, 1) .LT.XBOT )
IF (CPSND (JPLUS, 1) .GT.XRANG)
IF (CPSND (JPLUS,2).LT.YBOT )
IF (CPSND (JPLUS, 2) .GT.YRANG)
CONTINUE
GO TO 55

ENDIF

1) + XCOTR
2) + YCOTR
CPSND (JPLUS, 1) =CPSND (JPLUS, 1) +XRANG
CPSND (JPLUS, 1) =CPSND (JPLUS, 1) -XRANG
CPSND (JPLUS, 2) =CPSND (JPLUS, 2) +YRANG
CPSND (JPLUS, 2) =CPSND (JPLUS, 2) ~-YRANG

ADJUST THE TRANSFORMED COORDINATE

DO 50 IOPNT = 1, NOLPT

IF (CPSND (IOPNT,1) .LT.XBOT ) CPSND (IOPNT, 1)=XBOT
IF (CPSND(IOPNT, 1) .GT.XRANG) CPSND (IOPNT, 1)=XRANG

IF (CPSND (IOPNT,2) .LT.YBOT ) CPS

ND (IOPNT, 2) =YBOT

IF (CPSND (IOPNT, 2) .GT.YRANG) CPSND (IOPNT, 2)=YRANG

CONTINUE
CALCULATE THE 2nd MOMENT

CONTINUE

DO 60 IOPNT = 1, NOFPT

XCOOR = CPFST (IOPNT,1)

YCOOR = CPFST (IOPNT, 2)

CALL BVSMM ( XCOOR, YCOOR, CPSND
CONTINUE

CONTINUE

MAPPED PATTERN CASE

IOSIM = NOSIM

DO 80 JOPNT = NPLU1, NPLU2
KOPNT = JOPNT - NOFPT

CPSND (KOPNT,1) = CPFST (JOPNT, 1)
CPSND (KOPNT, 2) = CPFST (JOPNT, 2)
CONTINUE

DO 75 LSTEP = 1, NSTEP
SVALU (NOSIM, LSTEP) = O.

, SVALU, IOSIM )
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CONTINUE

DO 70 IOPNT = 1, NOFPT

XCOOR = CPFST (IOPNT,1)

YCOOR = CPFST (IOPNT, 2)

CALL BVSMM ( XCOOR, YCOOR, CPSND, SVALU, IOSIM )
CONTINUE

CUMULATIVE K FUNCTION

DO 300 IOSIM = 1, NOSIM
DO 200 ISTEP = 1, NSTEP

ADDTV = 0.

IF ( ISTEP.EQ.1 ) GO TO 200

KSTEP = ISTEP - 1

ADDTV = SVALU (IOSIM, KSTEP)

SVALU (IOSIM, ISTEP) = SVALU(IOSIM, ISTEP) + ADDTV
CONTINUE

CONTINUE

CALL KSTAT ( SVALU )
MONTE - CARLO STATISTICS

WRITE (6, 900)

DO 110 IOSIM = 1, NOSIM
CSTAT = 0.

RSTAT = 0.

DO 100 ISTEP = 1, NSTEP
JSTAT = 0

XSTAT = 0.

ZSTAT = SVALU (IOSIM, ISTEP)

DO 90 JOSIM = 1, NOSIM
IF ( JOSIM.EQ.IOSIM ) GO TO 90
XSTAT = XSTAT + SVALU(JOSIM, ISTEP)

CONTINUE ,
XSTAT = XSTAT / ( NOSIM - 1 )
CSTAT = ( ZSTAT - XSTAT ) **2
RSTAT = RSTAT + CSTAT
CONTINUE

IF ( IOSIM.EQ.1 ) THEN
RMINV = RSTAT
RMAXV = RSTAT
ENDIF
IF ( IOSIM.NE.NOSIM.AND.RSTAT.LE.RMINV ) RMINV = RSTAT
IF ( IOSIM.NE.NOSIM.AND (RSTAT.GE.RMAXV ) RMAXV = RSTAT
WRITE (6,910) IOSIM, RSTAT
CONTINUE
WRITE (6, 920) RMINV, RMAXV, RSTAT

FORMAT (//,5X, '"MONTE - CARLO TEST’,//)

FORMAT ( 5X, ' STATISTIC' , IS, =’ Fi1%.3 )

FORMAT (//,5X, 'MIN. VALUE OF STATISTIC = ’,F15.3,
/,5%X,'MAX. VALUE OF STATISTIC = ’',Fl15.3,
/,5X, 'MAPPED VALUE =',F15.3 )
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END

SUBROUTINE BVSMM ( XCOOR, YCOOR, CPSND, SVALU, IOQOSIM )

SUBROUTINE BVSMM EVALUATE THE SECOND MOMENT MEASURE FOR
BIVARIATE POINT PROCESS

IMPLICIT DOUBLE PRECISION (A-H, 0-2)
COMMON/CONFL/NOPNT, NOFPT, NOLPT, XRANG, YRANG, XBOT, YBOT,NOSIM,
* NTOTL, NDOF2, NSTEP, DSTEP, NDOFN, SIGMA, TSTEP , MAXXW,
* MAXYW, IOPTN, JOPTN, LOPTN, DFACT

DIMENSION CPSND(138,2), SVALU(NOSIM, NSTEP)

CNSTV = 1.

CALCULATE THE WEIGHTING COEFFICIENT W(X,U)

DIST1 = AMIN1 ( XCOOR, (XRANG - XCOOR) )
DIST2 = AMIN1 ( YCOOR, (YRANG - YCOOR) )
SQDIS = DIST1**2 4 DIST2#%2

DO 20 IPOIN = 1, NOLPT

XCOR1 = CPSND (IPOIN,1)
YCOR1 = “PSND (IPOIN, 2)
DISTO = SQRT ( (XCOOR-XCOR1) **24 (YCOOR-YCOR1) **2 )

NUMERICAL ERROR TERM

WEIGT = 0.

IF ( DISTO.LE.0.1 ) THEN
WEIGT = 1.
GO TO 15

ENDIF

ISTEP = DISTO / DSTEP + 1
IF ( ISTEP.GT.NSTEP ) GO TO 20
IF ( DISTO**2 LE.SQDIS ) THEN

DIST3 = ACOS( CNSTV » AMIN1 (DIST1,DISTO) / DISTO )
DIST4 = ACOS( CNSTV * AMIN1 (DIST2,DISTO) / DISTO )
WEIGT = 1. - ( DIST3 + DIST4d ) / 3.14159

ELSE
DIST3 = ACOS( CNSTV * DIST1 / DISTO )
DIST4 = ACOS( CNSTV * DIST2 / DISTO )
WEIGT = 0.75 - ( DIST3 + DIST4 ) / 6.28318

ENDIF

CONTINUE

WEIGT = XRANG * YRANG / ( WEIGT * (NOLPT*NOFPT) )
CALCULATE K FUNCTION

SVALU (IOSIM, ISTEP) = SVALU(IOSIM, ISTEP) + WEIGT
CONTINUE

RETURN
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END

SUBROUTINE NNMLE ( COORD, TRACE, SECON, XLAMO )

SUBROUTINE NNMLE EVALUATES THE HIERARCHICAL FIBER MODEL
WITH NEAREST NEIGHBOR FIBERS.

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON/CONFL/NOPNT, NOFPT, NOLPT, XRANG, YRANG, XBOT, YBOT, NOSIM,
* NTOTL, NDOF2, NSTEP, DSTEP, NDOFN, SIGMA, TSTEP , MAXXW,

* MAXYW, IOPTN, JOPTN, LOPTN, DFACT
DIMENSION COORD (NOPNT, 4), TRACE (NOFPT), SECON (NOPNT)
DIMENSION COORW(138,2)

TWOPI = 6.28318

JITRT = 1

VALTC = 0.

NPLUl = NOFPT + 1
NPLU2 = NOFPT + NOLPT

WRITE (6, 910)

CALCULATE THE MLE OF THE NEAREST NEIGHBOR FIBER FUNCTION
DO 10 IOPNT = NPLUl, NPLU2

READ MID POINT OF THE LATTER SET ( MAPPED DATA )

READ (5,*) ( COORD (IOPNT, IDOFN), IDOFN=1,NDOF2)
XCOOR = ( COORD (IOPNT,1) + COORD (IOPNT,3) ) / 2.

YCOOR = ( COORD (IOPNT,2) + COORD (IOPNT,4) ) / 2.
JOPNT = IOPNT - NOFPT

COORW (JOPNT, 1) = XCOOR

COORW (JOPNT, 2) = YCOOR

CONTINUE

JITRT = 1

EVALUATE LOG SUM OF MLE

SIGMO = SIGMA

DO 40 JSTEP = 1, NSTEP

XLAMO = XLAMO + DSTEP

DO 30 ISTEP = 1, NSTEP

VALUE = 0.

IF ( ISTEP.EQ.1 ) SIGMA = SIGMO
SIGMA = SIGMA + DSTEP

DO 20 IOPNT = 1, NOLPT
FIND THE SHORTEST DISTANCE BETWEEN A POINT AND A FIBER

XCOOR = COORW(IOPNT, 1)
YCOOR = COORW (IOPNT, 2)
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CALL NEARF ( JITRT, XCOOR, YCOOR, FDIST, COORD, TRACE, SECON )
JITRT = 2

EVALUATE MLE FOR NEAREST NEIGHBOR DISTANCE USING
MIXED DISTRIBUTION

VALUE = VALUE + ALOG( XLAMO / (22.*14.) +
* (1.-XLAMO) * EXP( -0.5 * (FDIST/SIGMA)**2 ) /
* ( SIGMA * SQRT (TWOPI) * FLOAT (NOLPT) ) )
20 CONTINUE
WRITE (6, 920) SIGMA, XLAMO, VALUE
IF ( ISTEP.EQ.1.AND.JSTEP.EQ.1 ) THEN

VALMX = VALUE
SIGMX = SIGMA
XLAMX = XLAMO
ENDIF
IF ( VALUE.GT.VALMX ) THEN
VALMX = VALUE
SIGMX = SIGMA
XLAMX = XLAMO
ENDIF

30 CONTINUE
40 CONTINUE
WRITE (6, 930)
WRITE (6, 920) SIGMX, XLAMX, VALMX

910 FORMAT (//,5X, 'MLE OF NEAREST NEIGHBOR FIBER FUNCTION',//) 3
920 FORMAT( /,2X,’SIGMA , XLAMO AND LOG SUM OF ML VALUE = ',

* 2r10.5,5X,r15.7)

930 FORMAT(//,5X, 'MAX. VALUES’,//)
RETURN
END

SUBROUTINE KFMLE ( COORD, CORFEB, SECON, TRACE, CORLF, COORL, SVALU,
* XLAMO )

SUBROUTINE KFMLE EVALUATES THE HIERARCHICAL FIBER MODEL
WITH LINE - KERNEL FUNCTION.

IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON/CONFL/NOPNT, NOFPT, NOLPT, XRANG, YRANG, XBOT, YBOT,NOSIM,

* NTOTL, NDOF2, NSTEP, DSTEP, NDOFN, SIGMA, TSTEP , MAXXW,
* MAXYW, IOPTN, JOPTN, LOPTN, DFACT

DIMENSION COORD (NOPNT, 4), CORFB (NOFPT,4), SECON (NOPNT),

* CORLF (NOLPT, 4) , COORL (NOLPT, 2), TRACE (NOFPT)

DIMENSION SVALU (NOSIM,NSTEP), RSCLE (2)
DIMENSION COORW (138, 2)

CALCULATE THE SHAPE OF THE LINE - KERNEL FUNCTION WITH
MAPPED DATA.

TWOPI
JITRT

6.28318
1
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VALTC = 0.
NPLUl = NOFPT + 1
NPLU2 = NOFPT + NOLPT

WRITE (6, 910)

CALCULATE THE MLE OF THE LINE - KERNEL FUNCTION
DO 10 IOPNT = NPLU1l,NPLU2
READ MID POINT OF THE LATTER SET ( MAPPED DATA )

READ (5,*) ( COORD (IOPNT, IDOFN), IDOFN=1,NDOF2)
XCOOR ( COORD (IOPNT,1) + COORD (IOPNT,3) ) / 2.
YCOOR ( COORD (IOPNT, 2) + COORD (IOPNT,4) ) / 2.
JOPNT IOPNT -~ NOFPT

COORW (JOPNT, 1) XCOOR

COORW (JOPNT, 2) YCOOR

10 CONTINUE

CALCULATE THE SUM OF ML

SIGMO = SIGMA
DO 40 JSTEP = 1, NSTEP

XLAMO = XLAMO + DSTEP

DO 20 ISTEP = 1, NSTEP

VALTC = 0.

VALUE = 0.

IF ( ISTEP.EQ.1 ) SIGMA = SIGMO

SIGMA = SIGMA + DSTEP

DO 30 IOPNT = 1, NOLPT

XCOOR = COORW (IOPNT, 1)

YCOOR = COORW (IOPNT, 2)

CALL LKERN ( JITRT,XCOOR,YCOOR, TRACE, VALU1, COORD, SECON

* NTOFB )

JITRT = 2

VALUE = VALUE + ALOG( XLAMO / ( 22. * 14. ) +
* (1.-XLAMO) * VALU1l / FLOAT (NOLPT) )

30 CONTINUE

20
40

WRITE (6, 920) SIGMA, XLAMO, VALUE
Ir ( ISTEP.EQ.1.AND.JSTEP.EQ.1 ) THEN
VALMX = VALUE

SIGMX = SIGMA
XLAMX = XLAMO
ENDIF
IF ( VALUE.GT.VALMX ) THEN
VAIMX = VALUE
SIGMX = SIGMA
XLAMX = XLAMO
ENDIF
CONTINUE
CONTINUE

WRITE (6, 930)
WRITE (6, 920) SIGMX, XLAMX, VALMX

’
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910 FORMAT(//,5X, 'MLE OF LINE - KERNEL FUNCTION',
* /)

920 FORMAT( /,2X,’'SIGMA AND XLAMO & LOG SUM OF ML VALUE =’
* 2r10.5,5X,F15.7)

930 FORMAT(//, 'MAX. VALUES’,//)

4

RETURN
END
SUBROUTINE KERNL ( NOLPT, XCOR2, YOCR2, VLUKL, COORW, SIGMA )

SUBROUTINE KERNL EVALUATE THE BIVARIATE KERNEL FUNCTION WHEN
GENERATING THE 2nd SET.

DIMENSION COORW(138,2)

TWOPI
VLUKL

6.28318
0.

DO 10 IOPNT = 1, NOLPT

XCORD = COORW (IOPNT, 1)

YCORD = COORW (IOPNT, 2)

DISTS = ( XCOR2-XCORD )**2 4 ( YCOR2-YCORD ) *#2
VLUKL = VLUKL + EXP( -0.5 * DISTS / SIGMA**2 )

10 CONTINUE
VLUKL = VLUKL / FLOAT (NOLPT)

RETURN
END

SUBROUTINE NEARF ( JITRT, XCOOR,YCOOR, FDIST, COORD, TRACE,
* SECON )

SUBROUTINE NEARF CALCULATES THE NEAREST NEIGHBOR FIBER
DISTANCE FROM A GIVEN POINT IN A MAP

IMPLICIT DOUBLE PRECISION (A-H,60-2)
COMMON/CONTFL/NOPNT, NOFPT, NOLPT, XRANG, YRANG, XBOT, YBOT, NOSIM,
* NTOTL, NDOF2, NSTEP, DSTEP, NDOFN, SIGMA, TSTEP , MAXXW,
* MAXYW, IOPTN, JOPTN, LOPTN, DFACT

DIMENSION COORD (NOPNT,4), TRACE (NOFPT), SECON (NOPNT)

FDIST = 0.

IF ( JITRT.EQ.1 ) THEN

DO 10 IOPNT = 1, NOFPT

IF ( COORD (IOPNT,1) .GT.COORD (IOPNT,3) ) THEN
CORXP = COORD (IOPNT, 3)
CORYP = COORD (IOPNT, 4)
COORD (IOPNT, 3) = COORD (IOPNT, 1)
COORD (IOPNT, 4) = COORD (IOPNT, 2)
COORD (IOPNT,1) = CORXP
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COORD (IOPNT, 2) = CORYP

y = secod * ( x - Xi ) + Yi

= trace length

= ( COORD (IOPNT, 4)
* ( COORD (IOPNT, 3)

IOPNT)
IOPNT)

10 CONTINUE

ENDIF

000

SECOD
SQRT ( (COORD (IOPNT, 3)
(COORD (IOPNT, 4)

DO 20 IOPNT = 1, NOFPT
IF ( SECON(IOPNT) .LT.0.001 ) SECON(IOPNT) = 0.001
SECOD = SECON (IOPNT)

XCROS
*

Qa0

CALCULATE THE LINE EQUATION FOR THE GIVEN FIBER

- COORD (IOPNT,2) ) /
-~ COORD (IOPNT,1) )

= COORD (IOPNT, 1)) **2 4
= COORD (IOPNT,6 2)) **2 )

LOOKING FOR A NEAREST NEIGHBOR FIBER FROM A GIVEN POINT

{ SECOD*COORD (IOPNT, 1) + XCOOR/SECOD + YCOOR

- COORD (IOPNT,2) ) / ( SECOD + 1./SECOD )

IF ( XCROS.LE.COORD (IOPNT,1) ) XCROS = COORD (IOPNT, 1)

IF ( XCROS.GE.COORD (IOPNT,3) ) XCROS = COORD (IOPNT, 3)
YCROS = ( XCROS-COORD (IOPNT,1) ) * SECOD + COORD (IOPNT, 2)
FDIS1 = SQRT( (XCOOR-XCROS)**2 + (YCOOR-YCROS)**2 )

FIND THE SHORTEST DISTANCE

IF ( IOPNT.EQ.1 ) FDIST = FDIS1
IF ( FDIS1.LT.FDIST ) FDIST = FDIS1

20 CONTINUE

RETURN
END

aqQ
Q

SUBROUTINE ORINT ( COORD, TRACE,

s NeNoNeNe]

IMPLICIT DOUBLE PRECISION (A-H,0-2)

SECON )

SUBROUTINE ORINT MEASURE THE ORIENTATION
CORRELATIONS BETWEEN SET 1 AND 2.

COMMON/CONFL/NOPNT, NOFPT, NOLPT, XRANG, YRANG, XBOT, YBOT, NOSIM,
NTOTL, NDOF2, NSTEP, DSTEP, NDOFN, SIGMA, TSTEP , MAXXW,
MAXYW, IOPTN, JOPTN, LOPTN, DFACT

COORD (NOPNT, 4) , TRACE (NOFPT),

CRORN (40,18), IRINT(20)

DIMENSION
DIMENSION

TWOPI = 6
NPLUl =

.28318

NOFPT + 1

IFr ( IOPTN.EQ.4 ) GO TO 110

SECON (NOPNT)
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READ (5,*) ANGLE
NOANG = 180. / ANGLE

READ COORDINATES OF FIBERS

DO 10 IOPNT = 1, NOPNT
READ (5,*) ( COORD (IOPNT, JOPNT), JOPNT=1,NDOF2 )
CONTINUE

LOOKING FOR A NEAREST NEIGHBOR FIBER

JITRT = 1

DO 20 IOPNT = NPLUl, NOPNT

XCOOR = ( COORD (IOPNT,1l) + COORD(IOPNT,3) ) / 2.

YCOOR = ( COORD (IOPNT,2) + COORD (IOPNT,4) ) / 2.

CALL NEARF ( JITRT,XCOOR, ¥YCOOR, FDIST, COORD, TRACE, SECON )
SITRT = 2

IDIST = FDIST / DSTEP
IDIST = IDIST + 1
CORDD = COORD (IOPNT,3) - COORD (IOPNT, 1)

IF ( CORDD.LE. 0.01.AND.CORDD.GE.Q. ) CORDD = 0.01
IF¥ ( CORDD.GE.-0.01 .,AND.CORDD.LE.0. ) CORDD =-0.01
STRKE = ( COORD (IOPNT, 4) - COORD (IOPNT,2) ) / CORDD
STRKE = ATAN(STRKE) * 180. / 3.14159

IF ( STRKE.LT.0. ) STRKE = STRKE + 180.

IORNT = STRKE / ANGLE

IORNT = IORNT + 1

CRORN (IDIST, IORNT) = CRORN (IDIST, IORNT) + 1
CONTINUE

WRITE (6, 910)

DO 30 ISTEP = 1, NSTEP

DISTS = ISTEP * DSTEP

DO 40 JSTEP = 1, NOANG

STRKE = JSTEP * ANGLE

IFREQ = CRORN (ISTEP, JSTEP)

FREQY = FLOAT( IFREQ ) / FLOAT( NOLPT )
WRITE (6, 920) DISTS, STRKE, IFREQ, FREQY
CONTINUE

CONTINUE

WRITE (6, 930)

DO 50 JSTEP = 1, NOANG

STRKE = JSTEP * ANGLE

DO 60 ISTEP = 1, NSTEP

IRINT (ISTEP) = CRORN(ISTEP, JSTEP)

CONTINUE

WRITE (6, 940) STRKE, (IRINT(ISTEP), ISTEP=1, NSTEP)
CONTINUE

RETURN

IOPTN = 4 : MLE OF ORIENTATION DISTRIBUTION

WRAPPED NORMAL DISTRIBUTION IS ADOPTED IN CURRENT VERSION
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110 CONTINUE

DO 115 IOPNT = 1, NOFPT

READ (5, *) DUMM1, DUMM2, DUMM3, DUMM4
115 CONTIKUE

DO 120 IOPNT = 1, NOLPT

READ (5
DIFFS =

+*) ( COORD (IOPNT, JOPNT) , JOPNT=1, NDOF2 )

COORD (IOPNT, 3) - COORD (IOPNT, 1)

IFr ( DIFFS.LE. 0.01.AND.DIFFS.GE.O. ) DIFFs = 0.01
IFr ( DIFFS.GE.-0.01.AND.DIFFS.LE.O. ) DIFFS =-0.01

SECOD =

{ COORD (IOPNT,4) - COORD (IOPNT,2) ) / DIFFS

SECON (IOPNT) = ATAN( SECOD ) * 57.2958

IF ( SECON(IOPNT) .LT.Q0. ) SECON(IOPNT) = SECON(IOPNT) + 180.
120 CONTINUE

READ OPTION ( MOPTN )
1l : Von Mises DISTRIBUTION ON A CIRCLE
2 : WRAPPED NORMAL DISTRIBUTION

NOLP2 =

NOLPT * 2

READ (5, *) MOPTN
WRITE (6, 990) MOPTN
IF ( MOPTN.EQ.2 ) GO TO 200

MOPTN =

CALCULATE THE MLE OF GIVEN DATA USING Von Mises DISTRIBUTION

XKVAL
XANGL

1

TSTEP
SIGMA

DO 150 JSTEP = 1, NSTEP

XANG1
XANG2

XANGL * JSTEP
XANG1 + 180.

DO 140 ISTEP = 1, NSTEP

XKVAL

BESSL

BESS1

VALUE =

TSTEP + ( ISTEP - 1 ) * DSTEP

1. + (0O.5*XKVAL)**2 + (0.5*XKVAL)**4 / 4. +
(O.5*XKVAL) **6 / 36. + (0.5*XKVAL)**8 / (24.)**2 +
(0.5*XKVAL) **10 / (120.)**2

1. / ( TWOPI * BESSL )

0

DO 130 IOPNT = 1, NOLP2
IF ( IOPNT.LE.NOLPT ) THEN
ANGLE = SECON (IOPNT)

ELSE

JOPNT
ANGLE

ENDIF

VALUE =
*

* * (
130 CONTINUE

WRITE (6,

IOPNT -~ NOLPT
SECON (JOPNT) + 180.

VALUE + ALOG( 0.5 * BESS1 * ( EXP ( XKVAL *
COS( (ANGLE-XANG1)*0.01745 ) ) ) + 0.5 * BESS1
EXP (XKVAL * COS( (ANGLE-XANG2)*0.01745 ) ) ) )

950) XKVAL, XANGl, VALUE
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IF ( ISTEP.EQ.1.AND.JSTEP.EQ.1l ) THEN
XKMAX = XKVAL
XAMAX = XANG1l
VAIMX = VALUE
ENDIF
IF ( VALUE.GT.VALMX ) THEN
XKMAX = XKVAL
XAMAX = XANG1l
VAIMX = VALUE
ENDIF
140 CONTINUE
150 CONTINUE
GO TO 300
c
(o MOPTN = 2
C WRAPPED NORMAL DISTRIBUTION
[
200 CONTINUE
XANGL = SIGMA
KSTEP = -NSTEP / 2

DO 230 ISTEP = 1, NSTEP
XANGL + ( ISTEP-1) * 5,
XANG1 + 180.

XANG1
XANG2

DO 220 JSTEP = 1, NSTEP
0.
TSTEP + ( JSTEP - 1 ) * DSTEP
DO 210 IOPNT = 1, NOLP2
IF ( IOPNT.LE.NOLPT ) THEN
ANGLE = SECON (IOPNT)

VALUE
XKVAL

ELSE

JOPNT
ANGLE

ENDIF
VALU1
VALU2

IOPNT - NOLPT
SECON (JOPNT) + 180.

0.
0.

DO 240 LSTEP = 1, NSTEP

RSTEP
VALUl
* *

VALU2
* *

ool i

KSTEP + LSTEP

VALUl + EXP( -0.5 * ( ( (ANGLE-~XANG1~360.*RSTEP)
.01745 ) **2 / XKVAL**2 ) )

VALU2 + EXP( -0.5 * ( ( (ANGLE-XANG2-360.*RSTEP)
.01745 ) **2 / XKVAL**2 ) )

240 CONTINUE
VALUE = VALUE +

*
(o]

210 CONTINUE

ALOG( 0.5 / (XKVAL*SQRT (TWOPI)) * (VALUl+VALU2))

WRITE (6, 950) XKVAL, XANG1l, VALUE
IF ( ISTEP.EQ.1.AND.JSTEP.EQ.1 ) THEN

XKMAX = XKVAL

XAMAX = XANG1

VALMX = VALUE
ENDIF

IF ( VALUE.GT.VALMX ) THEN
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XKMAX = XKVAL
XAMAX = XANG1l
VALMX = VALUE

ENDIF
220 CONTINUDE
230 CONTINUE

c
300 CONTINUE

c

WRITE (6, 960)

WRITE (6, 950) XKMAX, XAMAX, VALMX
c
c CALCULATE FREQUENCIES OF THE WRAPPED NORMAL DISTRIBUTION
c WITH CALCUALTED MAX. VALUE OF SIGMA
c

WRITE (6, 970)

VALUE = O.

VALMX = 0.

SIGMA = XKMAX

XKVAL = XKMAX

XANG1l = XAMAX

XANG2 = XANG1l + 180.

DO 330 IANGL = 1, 36

ANGLE = IANGL * 10.

VALUE = 0.

VALUl = 0.

VALU2 = 0.

IF ( MOPTN.EQ.2 ) THEN
DO 320 JSTEP = 1, NSTEP

RSTEP = KSTEP + JSTEP

VALUl = VALUl + EXP( -0.5 * ( ( (ANGLE-XANG1-360.*RSTEP)
* * 0.01745 ) **2 / SIGMA**2 ) )

VALU2 = VALU2 + EXP( -0.5 * ( ( (ANGLE-XANG2-360.*RSTEP)
* * 0.01745 )**2 / SIGMA**2 ) )

320 CONTINUE

VALUE = 0.5 / (SIGMA*SQRT (TWOPI)) * (VALUl+VALU2)
VALMX = VALMX + VALUE
ELSE
BESSL = 1. + (0.5*XKVAL)**2 + (0.5*XKVAL)**4 / 4. +
* (0.5*XKVAL)**6 / 36. + (0.5*XKVAL)**8 / (24.)**2 +
* (0.5*XKVAL) **10 / (120.)**2
BESS1 = 1. / ( TWOPI * BESSL )
c
VALUE = BESS1 * ( 0.5 * EXP( XKVAL *
* COS( (ANGLE-XANG1)*0.01745 ) ) + 0.5 #
* EXP( XKVAL * COS( (ANGLE-XANG2)*0.01745 ) ) )
VALMX = VALMX + VALUE
ENDIF

WRITE (6, 980) ANGLE, VALUE
330 CONTINUE
VALMX = VALMX * 0.17453
WRITE (6, 890) MOPTN, VALMX
c
890 FORMAT (//,5X, OPTION = ', IS,
* /,5X,’ INTEGRATION OF FREQUENCY = ’,F15.7)
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FORMAT (//, 5X, ' ORIENTATION CORRELATION MEASURE',

* /,7X, ' DISTANCE ANGLE FREQUENCY', //)

FORMAT ( 5X,2(F7.3,3X),I13,3X,F9.6)

FORMAT (//,5X, ' ANGLE DISTANCE : ( dstep * integer ) m’',//)

FORMAT ( 3X,r7.3,3%,1015)
FORMAT ( 5X, 'k-value ANGLE & LOG SUM = ', 3ris5,6)

FORMAT (//,5X,' MAX. VALUES OF WRAPPED NORMAL DISTRIBUTION'//)
FORMAT (//, 5X, ' FREQUENCY EVALUATION WITH GIVEN MAX. VALUES',//)

FORMAT ( 5X,'ANGLE & FREQUENCY = ’,2ri1s.5)
FORMAT (//, 5X, 'MLE OPTION : MOPTN ’, 10X, 15,

* /.,8X,’1 : Von Mises DISTRIBUTION ON A CIRCLE’,
* /,8X,’2 : WRAPPED NORMAL DISTRIBUTION ‘.,
* /1)

RETURN
END

PROGRAM TDIST

PROGRAM TDIST ESTIMATE THE TRACE LENGTH DISTRIBUTION
USING MAXIMUM LIKELIHOOD ESTIMATE

THREE POSSIBLE DISTRIBUTIONS ARE EXAMINED
1. EXPONENTIAL DISTRIBUTION
2. TRUNCATED NORMAL DISTRIBUTION
3. LOGNORMAL DISTRIBUTION

TRACE (i,1) : TRACE LENGTH DATA

TRACE (i,2) : BOUNDARY OF THE MAPPED AREA

NCONF (i) : CHARACTERISTICS OF THE TRACE
1 FOR THE TRACE WITH BOTH ENDS OBSERVABLE
2 FOR THE TRACE WITH ONE END OBSERVABLE
3 FOR THE TRACE WITH NO END OBSERVABLE

DIMENSION TRACE (39,2), NCONF(39)

OPEN (5, FILE='tdist.dat5’, STATUS=’UNKNOWN')
OPEN (6, FILE='tdist.out’)

NOFPT = 39

DO 10 IOFPT = 1,NOFPT

READ (5,*) TRACE(IOFPT,1l), TRACE(IOFPT,2), NCONF (IOFPT)
TRACE (IOFPT, 1) 0.833 * TRACE (IOFPT,1)

TRACE (IOFPT, 2) 0.833 * TRACE (IOFPT, 2)

CONTINUE

ITERATE FOR EACH CASE

SsuMMX = 0.

SUMMS = 0.

READ (5,*) NITER

DO 20 IITER = 1,NITER

READ THE OPTION

NOPTN = 1 : EXPONENTIAL DISTRIBUTION WITH MEAN VALUE
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2 : TRUNCATED NORMAL DISTRIBUTION WITH TWO VARIABLES

3 : LOGNORMAL DISTRIBUTION WITH TWO VARIABLES

READ (5,*) NOPTN
GO TO ( 100, 200, 300 ), NOPTN

EXPONENTIAL DISTIBUTION WITH ASSUMED MEAN VALUE

CONTINUE

WRITE (6, 900)

READ (5,*) RMEAN, STEPS, NSTEP
DO 40 ISTEP = 1,NSTEP

PROB3 = 0.
PROB6 = 0.
PROBY9 = 0.
XMEAN = RMEAN + (ISTEP - 1 ) * STEPS

DO 30 IOFPT = 1, NOFPT

JOPTN = NCONF (IOFPT)

RTRCE = TRACE (IOFPT, 1)

BTRCE = TRACE (IOFPT, 2)

CONST = 1. / ( 3.*XMEAN + BTRCE - 3.,*XMEAN*EXP (~-BTRCE/XMEAN) )

CONST = 1. / ( XMEAN + BTRCE ~ XMEAN * EXP{( -BTRCE/XMEAN ) )
IF ( JOPTN.EQ.l ) THEN

PROBl1 = BTRCE - XMEAN + XMEAN * EXP( - BTRCE / XMEAN )
PROBl1 = PROB1 * CONST
PROB2 = ( BTRCE - RTRCE ) * EXP( -RTRCE / XMEAN ) / XMEAN
PROB3 = PROB3 + ALOG{ PROBl1 * PROB2 )

ENDIF

IF ( JOPTN.EQ.2 ) THEN
PROB4 = 2.* XMEAN * ( 1. - EXP( - BTRCE / XMEAN ) )
PROB4 = PROB4 * CONST

PROBS5 = EXP( -~ RTRCE / XMEAN ) / ( XMEAN * ( 1, -
* EXP( - BTRCE / XMEAN ) ) )

PROB6 = PROB6 + ALOG( PROB4 * PROBS )
ENDIF

30

IF ( JOPTN.EQ.3 ) THEN

PROB7 = XMEAN * EXP( - BTRCE / XMEAN )
PROB7 = PROB7 * CONST
PROBS = 1.
PROB9 = PROBY +ALOG( PROB7*PROBS8 )
ENDIF
PROBQ = PROB3 + PROB6
CONTINUE

FIND MAXIMUM LIKELIHOOD ESTIMATES

WRITE (6,910) XMEAN, PROB3, PROB6, PROB9Y
IF ( ISTEP.EQ.1 ) THEN
SUMMA = PROBQ

SuMM3 = PROB3
SUMM6 = PROB6
SUMM9 = PROBY
VMEA3 = XMEAN
VMEA6 = XMEAN
VMEAS = XMEAN




ol oNe]

(e Mo N?]

Q00

-252-
ENDIF
IF ( PROB3.GT.SUMM3 ) THEN
SUMM3 = PROB3
VMEA3 = XMEAN
ENDIF
IF ( PROB6.GT.SUMM6 ) THEN
SUMM6 = PROB6
VMEA6 = XMEAN
ENDIF
IFr ( PROB9.GT.SUMMY9 ) THEN
SUMM9 = PROBY
VMEA9 = XMEAN
ENDIF
IF ( PROBQ.GT.SUMMA ) THEN
SUMMA = PROBQ
VMEAQ = XMEAN
ENDIF

40 CONTINUE
WRITE (6,920) VMEA3, SuMM3, VMEA6, SUMM6, VMEAY9, SUMMS, VMEAQ, SUMMA

COMPARE THE RESULT WITH EPSTEIN'S FORMULA FOR SAMPLING LINE

ISUMM = 0

TLENG = 0.

DO 50 IOFPT = 1, NOFPT

KOPTN = NCONF (IOFPT)

TLENG = TLENG + TRACE (IOFPT, 1)

IF ( KOPTN.EQ.1 ) ISUMM = ISUMM + 1
50 CONTINUE

VMEAN = TLENG / FLOAT( ISUMM )

WRITE (6, 930) VMEAN

GO TO 400
TRUNCATED NORMAL DISTRIBUTION WITH ASSUMED MEAN AND STD. DEVIATION

200 CONTINUE
READ (5,*) XMEAN, DEVIA, STEP1l, STEP2
GO TO 400

LOGNORMAL DISTRIBUTION WITH ASSUMED MEAN STD. DEVIATION

300 CONTINUE
READ (5,*) XMEAN, DEVIA, STEPl, STEP2

400 CONTINUE
20 CONTINUE

900 FORMAT(//,5X, ' EXPONENTIAL DISTRIBUTIONS OF TRACES’

* /,8X, 'MEAN VALUE’,10X,’'LOG SUM FOR TYPE 1 2 & 3',/)
910 FORMAT (7X, Fl12.5,5X,3(ri0.5,3X) )
920 FORMAT(//,5X,’'MAXIMUM LIKELIHOOD ESTIMATE FOR EXPONENTIAL CASE’',

* //,5%X,’TOR TYPE 1 ( BOTH ENDS VISIBLE )’,
* /,7X, ' MEAN VALUE = ‘ T20,r10.4,
* /,7X, "MAX. VALUE = ' ,T20,r10.4,
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* //,5X, "FOR TYPE 2 ( ONE END VISIBLE )’,
* /,7X, 'MEAN VALUE = ’,T20,r10.4,
* /.7X,"MAX. VALUE = ’,T20,r10.4,
* //,5X,'FOR TYPE 3 ( NO END VISIBLE )’,
* /,7X,'MEAN VALUE = ’,T20,F10.4,
* /.7X,'MAX. VALUE = ’,T20,r10.4,
* //,5X,’FOR SET 1 ( ALL TRACES)’,
* /.7X, 'MEAN VALUE = ’,T20,r10.4,
* /.7X, 'MAX. VALUE = ‘,T20,r10.4,//)

930 FORMAT(//,5X,'MLE FOR MEAN VALUE BY EPSTEIN EQUATION =',Fl15.7)

STOP
END

PROGRAM TERMN

PROGRAM TERMN EVALUATE THE TRACE LENGTH DISTRIBUTIONS
ACCORDING TO THE GIVEN SIMULATED TYPICAL POINTS.

DIMENSION COORD(138,2), TDIST(138), RSCLE(l), TSEND(138),
* TRCPT (138,4), TFREQ(30), RSCL1(1)
DIMENSION CORFP(39,4), TRACE(39), SECON(39)

NLENG = 30
FIRST, READ THE BEST FIT OF THE TYPICAL POINTS

READ (5,*) NOPNT, NOFPT, NOSIM, VMEAN, AMEAN, SIGMA, TRUNL
NOLPT = NOPNT - NOFPT
READ (5,*) XBOT, XTOP, YBOT, YTOP
WRITE (6, 820) NOPNT, NOFPT, NOLPT, VMEAN, AMEAN, SIGMA
820 FORMAT(//,5X,’NO. OF TOTAL POINTS 1,15,
/,5%X,’NO. OF POINTS IN SET 1 = ’,I5,
/,5X,'NO. OF POINTS IN SET 2 = ', IS,
/,5X, MEAR TRACE LENGTH OF SET 2
/., 5A, LIEAN ANGIE OF SET 2
/,5X,’ STANDARD DEVIATION OF ANGLE
XRANG = XTOP - XBOT
YRANG = YTOP - YBOT

', F15.5,
', F15.5,
*,r15.5,//)

* % %* % *

READ (5,*) MOPTN
WRITE (6, 990) MOPTN
990 FORMAT(//,5X, ' ORIENTATION DISTRIBUTION OPTION = ’,I10,
* /.8X,"( 1 : Von Mises DISTRIBUTION )
* /,8X,’ ( 2 : WRAPPED NORMAL DISTRIBUTION )’,//)
DO 10 IOPNT = 1, NOFPT
READ (5,*) ( CORFP (IOPNT, JOPNT), JOPNT=1, 4)
CORRS = CORFP (IOPNT, 3) ~ CORFP (IOPNT,1)
IF ( CORRS.LT.0. ) THEN
CORTX = CORFP (IOPNT, 1)
CORTY = CORFP (IOPNT, 2)
CORFP (IOPNT,1) = CORFP (IOPNT, 3)

CORFP (IOPNT,2) = CORFP (IOPNT,4)
CORFP (IOPNT, 3) = CORTX
CORFP (IOPNT,4) = CORTY

ENDIF
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TRACE (IOPNT) = SQRT( (CORFP (IOPNT, 3)-CORFP (IOPNT,1))**2 4

* (CORFP (IOPNT, 4) -CORFP (IOPNT, 2) ) **2 )

Ir ( CORRS.LE. 0.01.AND.CORRS.GE.0. ) CORRS = 0.01

IF ( CORRS.GE.-0.01l.AND.CORRS.LT.0. ) CORRS =-0.01

SECON (IOPNT) = ( CORFP (IOPNT,4)-CORFP (IOPNT,2) ) / CORRS
10 CONTINUE

DO 20 IOPNT = 1, NOLPT
READ (5,*) IDUMM, COORD (IOPNT,1), COORD (IOPNT,2)
20 CONTINUE

TWOPI 6.28318
XANGL 105.
IF ( MOPTN.EQ.l1l ) THEN
XKVAL = 1.9
BESSL = 1. + (0.5*XKVAL)**2 4+ (0.5*XKVAL)**4 / 4. +

* (O.5*XKVAL) **6 / 36. + (0.5*XKVAL)**8 / (24.)**2
* + (0.5*XKVAL)**10 / (120.)**2

BESS1 = 1. / (TWNOPI * BESSL )

VALMX = BESS1 * ( 0.5 * EXP(XKVAL) + 0.5 * EXP( ~XKVAL))
ELSE

XKVAL = 0.8

VALUl = 0.

VALU2 = 0.

NSTEP = 10

KSTEP = -NSTEP / 2

DO 500 JSTEP = 1, NSTEP

RSTEP = KSTEP + JSTEP

VALUL = VALUl + EXP(-0.5 * ((( =-360.*RSTEP)*0.01745 )**2
* / XKVAL**2 ) )

VALU2 = VALU2 + EXP(-0.5 * (((-180.-360.*DSTEP)*0.01745)**2
* / XKVAL**2 ) )

500 CONTINUE
VAIMX = 0.5 * ( VALUL + VALU2 ) / ( XKVAL * SQRT (TWOPI) )
ENDIF

JOPNT = 0
DSEED = 12345.D0
30 CONTINUE
CALL GGEXN ( DSEED, VMEAN, 1, RSCLE )
IF ( RSCLE(1l) .LT.TRUNL ) GO TO 30

35 CONTINUE

CALL GGUBS ( DSEED, 1, RSCL1 )

ORINT = RSCL1(1l) * 180.

IF ( MOPTN.EQ.l1 ) THEN
VALUE = BESS1 * ( 0.5 *EXP( XKVAL *

* COS( (ORINT-XANGL)*0.01745 ) ) +

* 0.5*EXP (XKVAL*COS ( (ORINT-XANGL-180.) *0.01745)))

ELSE
VALUL = 0.
VALU2 = 0.
DO 510 ISTEP = 1, NSTEP
RSTEP = KSTEP + ISTEP
VALU1l = VALU1l + EXP( -0.5 * ((( ORINT-XANGL-360.*
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* RSTEP) * 0.01745 )**2 / XKVAL**2 ) )
VALU2 = VALU2 + EXP( -0.5 * ((( ORINT-XANGL-180.-360.%
* RSTEP) * 0.01745 )**2 / XKVAL*#*2) )

510 CONTINUE

VALUE = 0.5*(VALU1+VALU2) / ( XKVAL * SQRT (TWOPI) )
ENDIF
CALL GGUBS ( DSEED, 1, RSCL1 )
IF ( RSCL1(1).GT. (VALUE/VALMX) ) GO TO 35

JOPNT = JOPNT + 1
TDIST (JOPNT) = RSCLE (1)
TDSTH = TDIST (JOPNT) / 2.
TDST1 = SQRT( 1. + (TAN(ORINT))**2 )
TRCPT (JOPNT, 1) = COORD (JOPNT,1) + TDSTH / TDST1
TRCPT (JOPNT, 2) = COORD (JOPNT,2) + TDSTH * TAN(ORINT) / TDST1
IF ( TRCPT(JOPNT,1l) .GT.XRANG ) THEN
TRCPT (JOPNT, 1) = XTOP
TRCPT (JOPNT, 2) = COORD (JOPNT, 2) +
* ( TRCPT (JOPNT,1) ~ COORD (JOPNT,1) ) * TAN (ORINT)
ENDIF
IF ( TRCPT(JOPNT,2) .GT.YRANG ) THEN
TRCPT (JOPNT, 2) = YTOP
TRCPT (JOPNT,1) = COORD (JOPNT,1) +
* ( TRCPT (JOPNT,2) -~ COORD (JOPNT,2) ) / TAN (ORINT)
ENDIF

IF ( TRCPT (JOPNT,1) .LT.XBOT ) THEN
TRCPT (JOPNT, 1) = XBOT
TRCPT (JOPNT, 2) = COORD (JOPNT, 2) -
* ( COORD (JOPNT,1) - XBOT ) * TAN (ORINT)
ENDIF
YCOOR = -1.19 * TRCPT(JOPNT,1) + 7.78
IF ( TRCPT(JOPNT, 2) .LT.YCOOR ) THEN
TRCPT (JOPNT, 1) = ( 7.78 + TAN(ORINT ) * COORD (JOPNT, 1)
* - COORD (JOPNT,2) ) / ( 1.19 + TAN(ORINT) )
TRCPT (JOPNT,2) = -1.19 * TRCPT (JOPNT,1) + 7.78
ENDIF
IF ( TRCPT(JOPNT,2) .LT.YBOT ) THEN
TRCPT (JOPNT, 2) = YBOT
TRCPT (JOPNT,1) = COORD (JOPNT, 1) -
* ( COORD (JOPNT,2) - YBOT ) / TAN (ORINT)
ENDIF

TRCPT (JOPNT, 3) = COORD (JOPNT,1) - TDSTH / TDST1
TRCPT (JOPNT, 4) = COORD (JOPNT,2) - TDSTH * TAN (ORINT) / TDST1
IF ( TRCPT (JOPNT, 3) .LT.XBOT ) THEN
TRCPT (JOPNT, 3) = XBOT
TRCPT (JOPNT, 4) = COORD (JOPNT, 2) -
* ( COORD (JOPNT,1) ~ TRCPT(JOPNT,3) ) * TAN(ORINT)
ENDIF
IF ( TRCPT(JOPNT, 3) .GT.XRANG ) THEN
TRCPT (JOPNT, 3) = XTOP
TRCPT (JOPNT, 4) = COORD (JOPNT, 2) +
* ( TRCPT (JOPNT,3) ~ COORD (JOPNT,1) ) * TAN (ORINT)
ENDIF
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YCOOR = ~1.19 * TRCPT(JOPNT,3) + 7.78
IF ( TRCPT(JOPNT,4) .LT.YCOOR ) THEN
TRCPT (JOPNT,3) = ( 7.78 + TAN(ORINT) * COORD (JOPNT, 1)

* - COORD (JOPNT,2) ) / ( 1.19 + TAN(ORINT) )

TRCPT (JOPNT,4) = -1.19 * TRCPT(JOPNT,3) + 7.78
ENDIF
IF ( TRCPT(JOPNT,4) .LT.YBOT ) THEN

TRCPT (JOPNT, 4) = YBOT

TRCPT (JOPNT, 3) = COORD (JOPNT, 1) -

* ( COORD (JOPNT, 2) ~- TRCPT (JOPNT,4) ) / TAN (ORINT)

ENDIF

IF ( TRCPT(JOPNT,4) .GT.YRANG ) THEN
TRCPT (JOPNT, 4) = YTOP
TRCPT (JOPNT, 3) = COORD (JOPNT, 1) +

* ( TRCPT (JOPNT, 4) - COORD (JOPNT,2) ) / TAN (ORINT)

ENDIF

YCOOR = 0.698 * TRCPT (JOPNT,1) - 4.56
IF ( TRCPT (JOPNT, 2) .LT.YCOOR ) THEN
TRCPT (JOPNT,1) = ( -4.56 + TAN(ORINT) * COORD (JOPNT, 1)

* - COORD (JOPNT,2) ) / ( -0.698 + TAN(ORINT) )

TRCPT (JOPNT, 2) = 0.698 * TRCPT(JOPNT,1l) - 4.56
ENDIF
YCOOR = 0.698 * TRCPT (JOPNT,3) - 4.56
IFf ( TRCPT (JOPNT, 4) .LT.YCOOR ) THEN
TRCPT (JOPNT,3) = ( -4.56 + TAN(ORINT) * COORD (JOPNT, 1)

* - COORD(JOPNT,2) ) / { -0.698 + TAN (ORINT) )

TRCPT (JOPNT, 4) = 0.698 * TRCPT(JOPNT,3) - 4.56
ENDIF
YCOOR = 0,698 * TRCPT(JOPNT,1l) + 11.
IF (TRCPT (JOPNT,2) .GT.YCOOR ) THEN

TRCPT (JOPNT, 1) = ( 11. 4+ TAN(ORINT) * COORD (JOPNT, 1)

* - COORD (JOPNT,2) ) / ( -0.698 + TAN(ORINT) )

TRCPT (JOPNT,2) = 0.698 * TRCPT(JOPNT,1) + 11.
ENDIF
YCOOR = 0.698 * TRCPT(JOPNT,3) + 11.
IF¥ ( TRCPT (JOPNT,4) .GT. YCOOR ) THEN
TRCPT (JOPNT, 3) = ( 11. + TAN(ORINT) * COORD (JOPNT, 1)

* - COORD (JOPNT,2) ) / ( -0.698 + TAN(ORINT) )

*

TRCPT (JOPNT,4) = 0.698 * TRCPT(JOPNT,3) + 11.
ENDIF

IF ( TRCPT (JOPNT, 3) .LT.TRCPT (JOPNT, 1) ) THEN
TRCTX = TRCPT (JOPNT, 1)
TRCTY = TRCPT (JOPNT, 2)
TRCPT (JOPNT, 1) TRCPT (JOPNT, 3)
TRCPT (JOPNT, 2) TRCPT (JOPNT, 4)
TRCPT (JOPNT, 3) TRCTX
TRCPT (JOPNT, 4) TRCTY
ENDIF

TDIST (JOPNT) = SQRT( ( TRCPT (JOPNT,3) - TRCPT(JOPNT,1) )**2 +
( TRCPT (JOPNT, 4) -~ TRCPT(JOPNT,2) )**2 )
IFr ( TDIST(JOPNT).LT.TRUNL ) THEN
JOPNT = JOPNT - 1
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GO TO 30
ENDIF

CORRS = TRCPT (JOPNT,3) - TRCPT (JOPNT, 1)

IF ( CORRS.LE. 0.01.AND.CORRS.GE.0. ) CORRS = 0.01

IF ( CORRS.GE.-0.01.AND.CORRS.LT.0. ) CORRS =-0.01

TSEND (JOPNT) = ( TRCPT (JOPNT, 4) -TRCPT (JOPNT,2) ) / CORRS

CALCULATE TERMINATION POINTS
IF TRACE LENGTH IS SMALLER THAN MEAN LENGTH, TERMINATE AT
THE NEAREST NEIGHBOR FIBER, IF IT IS GREATER THAN THAT OF MEAN
TERMINATE AT THE SECOND NEAREST NEIGHBOR FIBER.

XMEAN = ( TRCPT(JOPNT,3) + TRCPT(JOPNT,1l) ) / 2.
YMEAN = ( TRCPT (JOPNT,4) + TRCPT(JOPNT,2) ) / 2.
IFLAG = O

JFLAG = 0

XMAXL = ( TRCPT (JOPNT,3) - TRCPT(JOPNT,1) ) / 2
XMINL = ( TRCPT (JOPNT,1l) - TRCPT(JOPNT,3) ) / 2.
XMAXO = XMAXL

XMINO = XMINL

DO 100 IOPNT = 1, NOFPT
XCROS= (SECON (IOPNT) *CORFP (IOPNT, 1) ~TSEND (JOPNT) *TRCPT (JOPNT, 1)

+ TRCPT (JOPNT,2) - CORFP (IOPNT,2) ) /

( SECON (IOPNT) - TSEND (JOPNT) )
IF ( XCROS.GT.TRCPT (JOPNT, 3) .OR.XCROS.LT.TRCPT (JOPNT, 1) )

GO TO 100
YCROS = SECON (IOPNT) * ( XCORS ~ CORFP (IOPNT,1) ) +

CORFP (IOPNT, 2)
IF ( TRCPT (JOPNT, 4) .GE.TRCPT (JOPNT,2) ) THEN

IF ( YCROS.GT.TRCPT (JOPNT, 4) .OR.¥YCROS.LT.TRCPT (JOPNT, 2) )

GO TO 100
ELSE
IF ( YCROS.GT.TRCPT (JOPNT, 2) .OR.YCROS.LT.TRCPT (JOPNT, 4) )
GO TO 100
ENDIF

TRILH = SQRT ( (XMEAN-XCROS) **2 + (YMEAN-YCROS)**2 )
IF ( TRILH.GT.TDSTH ) GO TO 100

IF ( XCROS.GE.XMEAN ) IFLAG = IFLAG + 1

IF¥ ( XCROS.LT.XMEAN ) JFLAG = JFLAG + 1

XRESI = XCROS - XMEAN

IF ( IFLAG.EQ.1l ) XMAXL = XRESI

IF ( JFLAG.EQ.1 ) XMINL = XRESI

IF ( IFLAG.GT.1.AND.XRESI.GT.XMAXL ) XMAXL = XRESI
IF ( JFLAG.GT.l1.AND.XRESI.LT.XMINL ) XMINL = XRESI
CONTINUE

CONSIDER SET 2 EFFECT

IF ( JOPNT.GT.l1l ) THEN
KOPNT = JOPNT - 1
DO 110 KPONT = 1, KOPNT
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XCROS= (TSEND (KPONT) *TRCPT (KPONT, 1) ~TSEND (JOPNT) *TRCPT (JOPNT, 1)
* + TRCPT (JOPNT,2) - TRCPT(KPONT,2) ) /
* ( TSEND (KPONT) - TSEND (JOPNT) )

IF ( XCROS.GT.TRCPT (JOPNT, 3) .OR.XCROS.LT.TRCPT (JOPNT, 1) )

* GO TO 110

YCROS = TSEND (KPONT) * ( XCROS - TRCPT (KPONT,1l) ) +

* TRCPT (KPONT, 2)

IF ( TRCPT (JOPNT, 4) .GE.TRCPT (JOPNT, 2) ) THEN
IF ( YCROS.GT.TRCPT (JOPNT, 4) .OR.YCROS.LT.TRCPT (JOPNT, 2) )

* GO TO 110
ELSE
IF ( YCROS.GT.TRCPT (JOPNT, 2) .OR.YCROS.LT.TRCPT (JOPNT, 4) )
* GO TO 110
ENDIF

TRITH = SQRT ( (XMEAN-XCROS) **2 + (YMEAN-YCROS) **2 )
IF ( TRITH.GT.TDSTH ) GO TO 110
XRESI = XCROS - XMEAN

IF ( XRESI.GT.O0..AND.XRESI. sT.XMAXL ) XMAXL = XRESI
IF ( XRESI.LT.O0..AND.XRESI.LT.XMINL ) XMINL = XRESI
CONTINUE

ENDIF

CALL GGUBS( DSEED, 1, RSCLE )

IF ( RSCLE(1) .LE.0.232 ) THEN
TRCPT (JOPNT, 1) = XMEAN + XMINO
TRCPT (JOPNT, 3) = XMEAN + XMAXO

ELSE
TRCPT (JOPNT, 1)
TRCPT (JOPNT, 3)

ENDIF

TRCPT (JOPNT, 2)

XMEAN + XMINL
XMEAN + XMAXL

TSEND (JOPNT) * ( TRCPT (JOPNT,l) - XMEAN )
YMEAN
TSEND (JOPNT) * ( TRCPT (JOPNT,3) - XMEAN )
YMEAN
TDIST (JOPNT) = SQRT( (TRCPT (JOPNT, 3) -TRCPT (JOPNT, 1)) **2 4

TRCPT (JOPNT, 4)

+ 0+ 0

* (TRCPT (JOPNT, 4) ~TRCPT (JOPNT, 2) ) #*2 )

45

40

900
910

IF ( TDIST(JOPNT) .LT.TRUNL ) THEN
JOPNT = JOPNT - 1
GO TO 30

ENDIF

IF ( JOPNT.LT.NOLPT ) GO TO 30

WRITE (6, 900)
DO 45 KOPNT = 1, NOFPT

WRITE (6, 910) (CORFP (KOPNT,I), I = 1, 4)
CONTINUE

WRITE (6, 900)

DO 40 KOPNT = 1, NOLPT

WRITE (6,910) (TRCPT(KOPNT,I), I = 1, 4)
CONTINUE

FORMAT (//, 5X, ' SIMULATIONS OF THE TRACE LENGTHES’,//)
FORMAT ( 5X,2(2(F15.7,5X),/,5X) )
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STOP
END
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Appendix D
USER MANUAL AND LIST FOR "TRACESIM"

D.1 Introduction

Program TRACESIM is used to analyze a blocky rock mass behavior. For this, the
fracture pattern is first generated in a rock slope, followed by a topological analysis of fully
persistent rock blocks. Finally, the stability analysis for a given rock block is performed
using Coulomb’s failure criterion. OQutput data can be stored on a tape so that plotting of the

results is possible.

Program TRACESIM can be run both on VMS and on Unix operating systems. In
the case of VMS system, since one can attach a random number generator such as IMSL

mathematical package, minor changes in the program TRACESIM are needed (in

subroutines HPOIS, NHPOI and PATEN).

D.2 Input Manual for Program TRACESIM

Free format is used for all input data except for the title. According to the input
option (MOPTN), maximum three plotting data files are generated to plot the fracture

pattern, effective fractures and kinetically unstable rock blocks.

1. TITLE (20A4)
2. Analysis option data : NPOIN, NOSET, NOSIM, MOPTN, NSTAT, NCASE,
NSYST
¢ NPOIN : No. of fractures generated in a slope
¢ NOSET : No. of fracture sets in a slope
¢ NOSIM : No. of simulations for a given data
¢ MOPTN : Printout option
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a. MOPTN = 1 : Standard output of the result
b. MOPTN = 2 : Store simulated fracture pattern in file 7

¢. MOPTN = 3 : Store effective fractures and intersection points in
file 8

d. MOPT?! = 4 : Store cohesional and frictional forces of rock
blocks in file 10

e. MOPTN = 5 : Store simulated fracture pattern, effective
fractures and kinetically unstable rock blocks in files 7, 8 and 9,
respectively.

e NSTAT : Option for statistical analysis
a. NSTAT = 0 : Do not consider

b. NSTAT = 1 : Store the number of kinematically admissible rock
blocks according to volume.

c. NSTAT = 2 : Store the number of kinematically admissible rock
blocks according to dip angle.

e NCASE : No. of analysis cases

o NSYST : Operating system
a. NSYST =1 : VMS system

b. NSYST = 2 : Unix system
3. Read statistical analysis data ( skip if NSTAT = 0 ) : VARMN, DSTEP,
NSTEP, NREG1, NREG2
¢ VARMN : Minimum volume or dip angle according to NSTAT
¢ DSTEP : Size of increment
e NSTEP : Total no. of increments

e NREGI : Maximum number of simulations used to store the data in the
plotting file (NREG1 < NOSIM)

¢ NREG?2 : Maximum number of data case used to store the data in the
plotting file (NREG2 < NCASE)

4. Data for slope geometry : ANGLE, HEIGHT, RANGE, WEIGT, SFMAX
(use any consistent units)
e ANGLE : Slope angle in degrees
e HEIGHT : Slope height

e RANGE : Distance between slope toe and maximum slope face (see
Fig. 6-2 in the text)

e WEIGT : Unit weight of rock material
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e SFMAX : Safety factor used in the kinetic analysis

5. Read geometric option and mechanical properties of rock material (Total no.
of data sets = NOSET) : IOSET, NPROP(IOSET4), PROPT(IOSET,7),
DSEED, STAND (use any consistent units)

¢ JOSET : No. of fracture sets
e NPROP(IOSET,1) : No. of fractures generated

¢« NPROP(IOSET,2) : Options for midpoint models of fractures

a. NPROP(IOSET,2) = 1 : Homogeneous Poisson point process
model

b. NPROP(IOSET,2) = 2 : Non-homogeneous Poisson point
process model

e NPROP(IOSET,3) : Options for trace length distribution models
a. NPROP(IOSET,3) = 1 : Exponential distributrion model

b. NPROP(IOSET,3) = 2 : Lognormal distribution model

e NPROP(IOSET ,4) : Options for fracture orientation models
a. NPROP(IOSET,4) = 1 : Von Mises distribution model

b. NPROP(IOSET,4) = 2 : Wrapped normal distribution model
(currently ignored)

¢. NPROP(IOSET,4) = 3 : Uniform distribution model
d. NPROP(IOSET,4) = 4 : Fixed (i.e., parallel) orientation model
e PROPT(IOSET,1) : Mean trace length

¢ PROPT(IOSET,2) : Standard deviation of trace length (input 0 when
NPROPIOSET,3)=1)

e PROPT(IOSET,3) : Mean fracture orientation in degrees

¢ PROPT(IOSET 4) : Concentration factor of the Von Mises orientation
distribution. For other distribution, i.e., NPROP(IOSET4) = 2, 3 or 4,
set PROPT(IOSET4) = 0.

¢ PROPT(IOSET,S) : Cohesion of fracture
¢ PROPT(IOSET,6) : Friction angle of fracture
¢ PROPT(IOSET,7) : Tensile cut-off stress of fracture

¢ Read random number seed : DSEED or ISEED (input integer value
when NSYST = 2)

¢ Input max. radius of influence when NPROP(IOSET,2) = 2 : STAND
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D.3 Program Listing : TRACESIM

PROGRAM TRACESIM
(o]
CCCCCCCCCCeeceeceeceececececececececeecccccecceccecceccecccececcccceccccececcceecccee

PROGRAM TRACESIM IS INITIALLY INTENDED TO SIMULATE THE
MECHANICAL FRACTURING BEHAVIOR OF JOINTS ON A SLOPE
WHICH INCLUDES WING CRACK, COALESCENT CRACK AND SECOND
CRACK USING STOCHASTIC JOINT GEOMETRY MODEL.

VERSION 1 IS DEVELOPED IN THE ROCK MECHANICS GROUP AT
MIT, FEB. 1990, USING JVNC SUPER COMPUTER.

THIS VERSION IS USED FOR THE SLOPE STABILITY ANALYSIS
CONSIDERING FULLY PERSISTENT ROCK BLOCK MODEL

VERSION 1.1 IS UPDATED AND ADAPTED TO UNIX SYSTEM

oo 000n0
aooaoooaoao0aa0000

CCCCCCCCCCCCCCCCCCCCCCCecccececcccceccccccccccececcceccecceccccecececeeccecee
(o]

C IMPLICIT DOUBLE PRECISION (A-H, 0O-Z)
COMMON/CONTRO/NPOIN, NTRCE, NOSIM, NDOFN, MOPTN, IOSIM, NSYST,
* NOSET, ANGLE, HEIGT, RANGE, SFMAX, WEIGT, NCASE

COMMON/CONTOL/NMODE, SFMIN, MOSIM
COMMON/STATIC/NSTAT, VARMN, DSTEP, NSTEP, ICASE, NREGl, NREG2
DIMENSION KK(10000), AA(40000), TITLE (20)

c
NRVAR = 40000
NIVAR = 10000
NDOFN = 2
C
C*#*#* OPEN STATEMENT
C
OPEN (5, FILE='tracesim.dat5’, STATUS='UNKNOWN' )
OPEN (6, FILE='slope.out6’, STATUS='UNKNOWN' )
o
READ (5,900) TITLE
WRITE (6, 900) TITLE
o
(o 1. NO. OF SIMULATED JOINTS IN A SLOPE : NPOIN
(o] 2. NO. OF JOINT SETS : NOSET
(o} 3. NO. OF SIMULATIONS : NOSIM
C
(o 4. PRINTOUT OPTION : MOPTN
C 1 = PRINT A SIMULATED TRACE PATTERN IN STANDARD OUTPUT FILE 6
(o] 2 = PRINT A SIMULATED TRACE PATTERN BOTH
(od IN STANDARD OUTPUT FILE 6 AND IN PLOTTING FILE 7
(o] 3 = PRINT A DETECTED TRACE PATH IN PLOTTING FILE 8
(od 4 = STORE SAFETY FACTOR IN FILE 10
C 5 = STORE ALL DATA IN PLOTTING FILES 7, 8 AND 9
(od
C 5. OPTION FOR STATISTICAL ANALYSIS : NSTAT
o] 0 = DO NOT CONSIDER
Lod 1 = STATISTICAL ANALYSIS OF S.F. ACCORDING TO VOLUME
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2 = STATISTICAL ANALYSIS OF S.F. ACCORDING TO DIP
6. OPTION FOR NO. OF CASES : NCASE
7. OPTION FOR OPERATING SYSTEM : NSYST
1 = RUNNING ON VMS SYSTEM
2 = RUNNING ON Unix SYSTEM
8. ANALYSIS OPTION : NOPTN

1
2

HOMOGENEOUS POISSON MID-POINT PATTERN
NON-HOMOGENEOUS POISSON MID-POINT PATTERN

9. TRACE LENGTH DISTRIBUTION OPTION : NOPLT

1
2

EXPONENTIAL DISTRIBUTION WITH MEAN TRACE LENGTH
LOGNORMAL DISTRIBUTION WITH MEAN AND STD. DEVIATION

10. ORIENTATION DISTRIBUTION OPTION : NOPDP

1l = Von Mises DISTRIBUTION FUNCTION WITH MEAN ORIENTATION
AND CONCENTRATION FACTOR

2 = WRAPPED NORMAL DISTRIBUTION FUNCTION WITH MEAN
ORIENTATION AND CONCENTRATION FACTOR
UNIFORM DISTRIBUTION ON [0, 180 deg]

w
nn

4 = FIXED ORIENTATION ON THETA

11. NO. OF EFFECTIVE JOINTS IN A SLOPE : NTRCE

12. PRESCRIBED SAFETY FACTOR : SFMAX

READ (5,*) NPOIN, NOSET, NOSIM, MOPTN, NSTAT, NCASE, NSYST
WRITE (6,910) NPOIN, NOSET, NOSIM, MOPTN, NSTAT, NCASE, NSYST
MOSIM = NOSIM + 1
OPEN STATEMENTS

IF ( MOLTN.GE.2 ) OPEN (7, FILE='slope.out?7’, STATUS='UNKNOWN'
IFr ( MOPTN.GE.3 ) OPEN (8, FILE='slope.out8’, STATUS='UNKNOWN'
0)
0)

~

IF ( NSTAT.GT. OPEN (9, FILE='slope.out$9’, STATUS='UNKNOWN'
IF ( NSTAT.GT. OPEN (10,FILE='slope.out(l’, STATUS=' UNKNOWN'

-

-

READ PARAMETERS FOR STATISTICAL ANALYSIS
VARMN : MINIMUM VALUE OF VOLUME OR DIP ANGLE
DSTEP : SIZE OF INCREMENT
NSTEP : NO. OF INCREMENTS

IF ( NSTAT.NE.O ) THEN
READ (5,*) VARMN, DSTEP, NSTEP, NREGl, NREG2
WRITE (6, 920) VARMN, DSTEP, NSTEP

ENDIF

READ (5,*) ANGLE, HEIGT, RANGE, WEIGT, SFMAX
WRITE (6, 930) ANGLE, HEIGT, RANGE, WEIGT, SFMAX

MOPNR = 4
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MPARA = 7
NOPNR = NOSET * MOPNR
NTOTL = NDOFN * NPOIN
NTOVL = NTOTL * 2
NPARA = NOSET * MPARA
NTLST = MOSIM * NSTEP
MSTOR = NCASE * NSTEP
IF ( NSTAT.EQ.O0 ) THEN

NTLST = 1

MSTOR = 1
ENDIF

DYNAMIC DIMENSIONING

NR1 : OUTPUT OF STABILITY PROBABILITY 1 = CASEO (NSTEP,NCASE)
NR2 OUTPUT OF STABILITY PROBABILITY 2 = CASET (NSTEP, NCASE)
NR1 =1

NR2 = NR1 + MSTOR

NR3 = NR2 + MSTOR

JVARI = NR3 - 1

DO 1 IVARI = 1, JVARI

AA(IVARI) = O.

CONTINUE

DO LOOP FOR EACH PARAMETER CASE

DO 500 ICASE = 1, NCASE

DYNAMIC DIMENSIONING

NR6 :

2
na

NR7
NR8

NIl
NI2

NIl
NI2
NI3

LVAR]1 =
LVAR2 =

: MATERIAL PARAMETERS = PROPT (NOSET,MPARA)

KINEMATIC UNSTABLE JOINT PATHS = SVALU (MOSIM,NSTEP)
( OPTIONAL )

: MECHANICAL UNSTABLE JOINT PATHS = TVLAU (MOSIM, NSTEP)

( OPTIONAL )

MID
END

NR3
NR4
NRS
NR6
NR7

NO.
NO.

1
NIl
NI2

NR6
NI2

POINTS DIMENSION = COORM(NPOIN, 2)
POINTS DIMENSION = COORE (NTOTL, 2)

+ NPARA
+ NTLST
4+ NTLST
+ NTOTL
+ NTOVL

OPTION PARAMETERS IN TOTAL JOINT SETS = NPROP (NOSET, 4)
INTERSECTION POINT AT EACH TRACE = NINPT (NPOIN)
+ NOPNR

+ NPOIN

-1
-1

DO 5 IVARI = NR3, LVAR1
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AA(IVARI) = 0.
DO 6 IVARI = 1, LVAR2
KK(IVARI) = 0
MAIN LOOP
DO 100 IOSIM = 1, NOSIM
INITIALZE ARRAYS
DO 10 IVARI
AR (IVARI) =

DO 20 IVARI
KK (IVARI) =

NR6, NRVAR

NIZ2, NIVAR

ool

CALL MAIN OPTION

CALL MAINS ( AA(NR3 ), AA(NR6 ), AA(NR7 ), KK(NI1l ), KK(NI2 ),

* MAXPT, NOEFJ, MAXBT )

IF ( NOEFJ.EQ.O0.OR.MAXBT.LT.2 ) THEN
WRITE (6, 980) NOEFJ, MAXBT
GO TO 100

ENDIF

CALL GEOMETRIC SCREENING OPTION

NTRCE = NOEFJ + 2
NTOCY = NTRCE * NTRCE
NTOCO = NOEFJ * 4
NR8 : TRACE CONNECTIVITY MATRIX = XCONN (NTRCE, NTRCE)
NR9 : TRACE CONNECTIVITY MATRIX = YCONN (NTRCE, NTRCE)
NR10 : COORDINATE MATRIX OF EFFECTIVE TRACES = COORF (NOEFJ, 4)
NI3 : NO. INTERSECTION POINTS AT EFECTIVE JOINT = NINEP (NOEFJ)
NI4 : MAERIAL PROPERTY AT EACH EFFECTIVE JOINT = NMTRL (NOEFJ)
NR9 = NR8 + NTOCY
NR10 = NR9 + NTOCY
NR11l = NR10 + NTOCO
NI4 = NI3 + NOEFJ
NIS = NI4 + NOEFJ
NRTOT = NR1ll1l - 1
NITOT = NI5 -~ 1
IERRO = 0

IF ( NRVAR.GT.NRTOT ) GO TO 30
WRITE (6, 950)

IERRO = IERRO + 1

CONTINUE

IF ( NIVAR.GT.NITOT ) GO TO 40
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WRITE (6, 970)
IERRO = IERRO + 1
40 CONTINUE
IF ( IERRO.GT.0 ) STOP

C
CALL KINEM ( AA(NR1l ), AA(NR2 ), AA(NR3 ), AA(NR4 ), AA(NRS ),
* AR(NR6 ), AA(NR7 ), AA(NRS ), AA(NRY ), AA(NR1O),
* KK(NI1 ), KK(NI2 ), KK(NI3 ), KK(NI4 ),
* MAXPT, NOEFJ )

c

100 CONTINUE
500 CONTINUE

c
900 FORMAT (20A4)
910 FORMAT(//, 5X, 'NO. JOINTS IN A SLOPE = ', 3X, 15,
* /, 5%, 'NO. JOINT SETS IN A SLOPE = ’, 3X, 15,
* /. 5%, 'NO. SIMULATIONS = ', 3X, 15,
* /., 5X, 'PRINTOUT OPTION =, 3X, 15,
» /. 17X, ' ( 0 : NO PRINTOUT )!,
* /. 7X, "( 1 : STANDARD PRINTOUT )*,
* /. 7X, "( 2 : CREATE PLOTTING FILE 7 )’,
* /., 7X, "( 3 : CREATE FILES 7 AND 8 Y,
* /, 7X, ' ( 4 : INCLUDE PERTURBED DATA )’',
* /. 5X, 'STATISTICAL ANALYSIS OPTION = ‘', 3X, 15,
* /., 7X, "( 0 : DO NOT CONSIDER )’,
* /., 7X, (1 : VOLUME CRITERION )’
* /. 71X, "( 2 : MIN. DIP CRITERION )y',
* /. 5X, 'NO. OF SIMULATION CASES =/, 3X, 15,
* /., 5X, 'OPERATING SYSTEM =’, 3Xx, 15,
* /, 7X, '( 1 : RUNNING ON VMS SYSTEM )’,
* /., TX, '( 2 : RUNNING ON Unix SYSTEM )’ )
920 FORMAT(//, 5X, ’'STATISTICAL ANALYSIS',
* /, 717X, 'STARTING VOLUME OR DIP ="', r10.3,
* /. 7X, 'SIZE OF INCREMENT ="', rl10.3,
® /., 7X, 'NO. OF INCREMENTS ="', 110 )
930 FORMAT(//, 5X, ’'SLOPE SHAPE CONFIGURATION’,
* /., TX, 'SLOPE ANGLE ( Degrees ) ="', r10.3,
* /., 7X, ‘'SLOPE HEIGHTS =’, r10.3,
* /. 7X, 'FREE SURFACE RANGES ="', r10.3,
* //, 5X, 'UNIT WEIGHT OF ROCK MASS = ‘', r10.3,
* /, 5X, 'PRESCRIBED SAFETY FACTOR = ', ri10.3 )
950 FORMAT(//, 5X, ’'#*** INCREASE STORAGE FOR REAL ARRAY' )

970 FORMAT(//, 5X, ’'*** INCREASE STORAGE FOR INTEGER ARRAY' )
980 FORMAT(//, 5X, ’'#*#** NOT APPROPRIATE JOINT PATTERN ol od AN

* /. 7X, 'TOTAL INTERSECTION POINTS = ’, IS,
* /, 7X, 'TOTAL INTERSECTING BOUNDARY = ‘', IS5)
c
STOP
END
ccc
c
SUBROUTINE MAINS ( PROPT, COORM, COORE, NPROP, NINPT,
* MAXPT, NOEFJ, MAXBT )
c
c SUBROUTINE MAINS CONTROLS THE OPTIONS
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IMPLICIT DOUBLE PRECISION (A-H, 0-2)

COMMON/CONTRO/NPOIN, NTRCE, NOSIM, NDOFN, MOPTN, IOSIM, NSYST,
* NOSET, ANGLE, HEIGT, RANGE, SFMAX, WEIGT, NCASE
COMMON/CONTOL/NMODE, SFMIN, MOSIM

COMMON/STATIC/NSTAT, VARMN, DSTEP, NSTEP, ICASE, NREGl, NREG2
DIMENSION COORM (NPOIN,2), COORE (NPOIN,4), PROPT (NOSET, 7)
DIMENSION NPROP (NOSET, 4), NINPT (NPOIN)

FIRST, PROGRAM TRACESIM SIMULATES THE APPROPRIATE JOINT
PATTERN IN A SLOPE ACCORDING TO THE OPTIONS OF

NOPTN, NOPLT AND NOPDP.

CALL GENES ( COORM, COORE, PROPT, NPROP )

SECOND, CONSIDER THE GEOMETRICALLY ADMISSIBLE JOINT PATHS
CALL GEOTY ( COORM, COORE, NINPT, MAXPT, NOEFJ, MAXBT )
RETURN

END

SUBROUTINE GENES ( COORM, COORE, PROPT, NPROP )

SUBROUTINE GENES GENERATES THE JOINT PATTERN IN A SLOPE
ACCORDING TO THE OPTIONS OF NOPTN, NOPLT AND NOPDP.

IMPLICIT DOUBLE PRECISION (A-E, 0-2)
COMMON/CONTRO/NPOIN, NTRCE, NOSIM, NDOFN, MOPTN, IOSIM, NSYST,

* NOSET, ANGLE, HEIGT, RANGE, SFMAX, WEIGT, NCASE

DIMENSION COORM (NPOIN, 2), COORE (NPOIN, 4)
DIMENSION NPROP (NOSET,4), PROPT (NOSET, 7)

PIRAD = 3.1415926 / 180.
READ GEOMETRY OPTIONS

IF ( TOSIM.EQ.1 ) THEN
NTRPT = 0
DO 10 KOSET = 1, NOSET
READ (5,*) IOSET
READ (5,*) ( NPROP (IOSET,JOSET),JOSET= 1, 4 )
READ (5,*) ( PROPT (IOSET,JOSET),JOSET= 1, 7 )
WRITE (6,910) IOSET, ( NPROP (IOSET,JOSET), JOSET= 1, 4 )
WRITE (6,915) ( PROPT (IOSET, JOSET),JOSET= 1, 7 )
PROPT (IOSET, 3) = PROPT (IOSET,3) * PIRAD
PROPT (IOSET, 6) = PROPT (IOSET,6) * PIRAD
NTRPT = NTRPT + NPROP (IOSET,1)
CONTINUE
IF ( NTRPT.NE.NPOIN ) THEN
WRITE (6, 920)
RETURN
ENDIF
ENDIF
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IPOIN = 0

DO 400 IOSET =
NOPTN = NPROP (IOSET, 2)
GO TO (100, 200), NOPTN
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-269-

GENERATE THE MID-POINT PATTERN OF JOINTS IN A SLOPE

1, NOSET

A HOMOGENEOUS POISSON POINT PATTERN

NOPTN

CALL HPOIS ( COORM, ISEED, DSEED, NPROP, IOSET, IPOIN )

GO TO 300

aaa

200 CONTINUE

CALL NHPOI ( COORM, ISEED, DSEED, NPROP, IOSET,

300 CONTINUE

naaao

CALL PATEN ( COORM, COORE, ISEED, DSEED, NPROP, IOSET,

*
400 CONTINUE

910 FORMAT(//,
/.

* % % % % * * % % % % *
~

915 FORMAT(//,
/.
/.
/.
/.

* % % % % * % *
~

920 FORMAT(//,
c
RETURN
END
cce

A NON-HOMOGENEQUS POISSON POINT PATTERN

PROPT, IPOIN )

5X,
X,
TX,
9xX,
9X,
X,
9x,
9X,
X,
9X,
9X,
9x,
9X,
7X,
9X,
9X,
9xX,
9x,
7X,
X,
9Ix,
9X,
5X,

'%®%% JOINT SET NO.
‘NO. OF JOINTS

GENERATE A TRACE LENGTH AND AN ORIENTATION OF A JOINT
AT EACH MID-POINT ACCORDING TO NOPLT AND NOPDP

"OPTION FOR JOINT PATTERN DISTRIBUTION

(1 : HOMO. POISSON POINT PATTERN

‘( 2 : NON-HOMO. POISSON POINT PATTERN

"OPTION FOR JOINT LENGTH DISTRIBUTION
‘(1 : EXPONENTIAL LENGTH DISTRIBUTION
'( 2 : LOGNORMAL LENGTH DISTRIBUTION

‘OPTION FOR ORIENTATION DISTRIBUTION

IPOIN )

(1l : VON MISES ORIENTATION DISTRIBUTION )’ ,

(2 WRAPPED NORMAL

(4 FIXED ORIENTATION
' GEOMETRIC PARAMETERS OF JOINTS',
‘MEAN JOINT LENGTH

' STDP. DEVIATION (LOGNORMAL)

'MEAN ORIENTATION ( Degree )

' CONCENTRATION FACTOR

'MECHANICAL PROPERTIES OF JOINTS’,
"COHESION OF JOINT FACE

"FRICTION ANGLE OF JOINT FACE (Deg.)
"TENSILE CUT-OFF STRESS OF JOINT

r**% WARNING *** : NO. POINT NOT MATCHED'

: DISTRIBUTION )’ ,
"( 3 : UNIFORM ORIENTATION DISTRIBUTION )’ ,

)" )

ri0.3,
¥10.3,
r1o0.3,
F10.3,

ri0.3,
Fl0.3,
r10.3 )
)

_—




(9]

e NeoNeNeNe!

aaoan (o e NeNe!

Qaa

* kR

L2 2 g

10

o000

(e Mo Ne Ny

(9]

L2 2

X 2

-270-

SUBROUTINE HPOIS ( COORM, ISEED, DSEED, NPROP, IOSET, IPOIN )

SUBROUTINE HPOIS GENERATES THE HOMOGENEOUS POISSON POINT
PATTERN IN A SLOPE

IMPLICIT DOUBLE PRECISION (A-H, 0-2)

COMMON/CONTRO/NPOIN, NTRCE, NOSIM, NDOFN, MOPTN, IOSIM, NSYST,
* NOSET, ANGLE, HEIGT, RANGE, SFMAX, WEIGT, NCASE
DIMENSION COORM (NPOIN, 2), TMPRY (2)

DIMENSION NPROP (NOSET, 4)

CALL RANDOM NUMBER GENERATOR
ACCORDING TO UNIX OR VMS MODE

IF ( IOSIM.EQ.1.AND.IOSET.EQ.1 ) THEN
IF ( NSYST.EQ.l ) THEN

REAL SEED FOR VMS SYSTEM ( USE IMSL ROUTINE )

READ (5,*) DSEED
ELSE

INTEGER SEED FOR UNIX SYSTEM FUNCTION RANDOM

READ (5,* ) ISEED

ENDIF

ENDIF

NOPNT = NPROP (IOSET, 1)

IOPNT = 0

PIVAL = 3.1415926

ANRAD = ANGLE * PIVAL / 180.
CONTINUE

IF ( NSYST.EQ.2 ) THEN
CALL INTRINSIC FUNCTION IN UNIX SYSTEM
TMPRY (1) = RANDOM (ISEED)
ISEED = IRANDM (ISEED)
TMPRY (2) = RANDOM (ISEED)
ISEED = IRANDM (ISEED)
ELSE
CALL IMSL IN VMS SYSTEM

CALL GGUBS (DSEED, 2, TMPRY)

ENDIF

TMPCX = TMPRY (1) * RANGE
TMPSP = TMPCX * TAN (ANRAD)
TMPCY = TMPRY (2) * HEIGT

CHECK THE SLOPE FACE BOUNDARY
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IF ( TMPCY.GT.TMPSP ) GO TO 10

IPOIN = IPOIN + 1

IOPNT = IOPNT + 1

COORM (IPOIN, 1) = TMPCX
COORM(IPOIN,2) = TMPCY

IF ( IOPNT.LT.NOPNT ) GO TO 10

RETURN
END
ccC

SUBROUTINE NHPOI ( COORM, ISEED, DSEED,
* NPROP, IOSET, IPOIN, ICASE )

SUBROUTINE NHPOI GENERATES THE NON HOMOGENEOUS
HIERARCHICAL POINT PATTERN IN A SLOPE.

oQo0aon

IMPLICIT DOUBLE PRECISION (A-H, O-2)

COMMON/CONTRO/NPOIN, NTRCE, NOSIM, NDOFN, MOPTN, IOSIM, NSYST,
* NOSET, ANGLE, HEIGT, RANGE, SFMAX, WEIGT, NCASE
DIMENSION COORM (NPOIN,2), TMPRY (2)

DIMENSION NPROP (NOSET, 4)

CURRENTLY, CLUSTERING PATTERN OF THE SECOND SET AROUND
THE FIRST SET CAN BE REALIZED.

s e NeNel

NOPNT
IOPNT
PIVAL
ANRAD
NOPRS

NPROP (IOSET, 1)

0

3.1415926

ANGLE * PIVAL / 180.
NPOIN - NOPNT

IFr ( IOSIM.EQ.1.AND.IOSET.NE.1l ) THEN
READ (5,*) STAND
WRITE (6,100) STAND

ENDIF

o] DO 50 IOPNT = 1, NOPNT
10 CONTINUE

IF ( NSYST.EQ.2 ) THEN

*##%* CALL RANDOM IN UNIX SYSTEM

(e NeNe!

TMPRY (1) = RANDOM (ISEED)

ISEED = IRANDM (ISEED)

TMPRY (2) = RANDOM (ISEED)

ISEED = IRANDM (ISEED)
ELSE

*x%* VMS SYSTEM

(oMo le N

CALL GGUBS (DSEED, 2, TMPRY)
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ENDIF

KRNDM = TMPRY (1) * NOPRS + 1
COORX = COORM (KRNDM, 1)

COORY = COORM (KRNDM, 2)

TMPCX = COORX + STAND * TMPRY(l) - S
TMPCY = COORY + STAND * TMPRY(2) - STAND
TMPSP = TMPCX * TAN (ANRLD)

IF ( TMPCX.LE.O..OR.TMPCX.GE.RANGE ) GO TO 10
IF ( TMPCY.LE.O..OR.TMPCY.GE.HEIGT ) GO TO 10
IF ( TMPCY.GT.TMPSP ) GO TO 10

IPOIN = IPOIN + 1

IOPNT = IOPNT + 1

COORM (IPOIN, 1) = TMPCX

COORM (IPOIN, 2) = TMPCY

IF ( IOPNT.LT.NOPNT ) GO TO 10

FORMAT (5X, ' INFLUENCE ZONE OF CLUSTERING PATTERN = ‘', 63X,F12.2)

RETURN
END

SUBROUTINE PATEN ( COORM, COORE, ISEED, DSEED, NPROP, IOSET,
* PROPT, IPOIN )

SUBROUTINE PATEN EVALUATES THE TRACE LENGTH AND ORIENTATION
OF A TRACE ACCORDING TO NOPLT AND NOPDP

IMPLICIT DOUBLE PRECISION (A-H, O-2)

COMMON/CONTRO/NPOIN, NTRCE, NOSIM, NDOFN, MOPTN, IOSIM, NSYST,
* NOSET, ANGLE, HEIGT, RANGE, SFMAX, WEIGT, NCASE
COMMON/CONTOL/NMODE, SFMIN, MOSIM

DIMENSION COORM(NPOIN, 2), COORE (NPOIN,4), TMPAl(l), TMPA2(1)
DIMENSION NPROP (NOSET,4), PROPT (NOSET, 7)

PIRAD = 3.1415926
RADIN = PIRAD / 180.
ANRAD = ANGLE * RADIN
NOPNT = NPROP (IOSET, 1)
NOPLT = NPROP (IOSET, 3)
NOPDP = NPROP (IOSET, 4)
TRCEM = PROPT (IOSET, 1)
STDTN = PROPT (IOSET, 2)
THETA = PROPT (IOSET, 3)
CONFT = PROPT (IOSET, 4)

USE MID-POINT COORDINATES EITHER FROM SUBROUTINE HPOIS OR
FROM NHPOI.

FROM IMSL, CHOOSE SUBROUTINES GGEXN OR GGNLG FOR EXPONENTIAL
AND LOGNORMAL TRACE LENGTH DISTRIBUTION, RESPECTIVELY.
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KPOIN = IPOIN - NOPNT
JPOIN = KPOIN + 1
CONTINUE

KPOIN = KPOIN + 1

IF ( NSYST.EQ.1 ) THEN
IF ( NOPLT.EQ.1 ) THEN
CALL GGEXN ( DSEED, TRCEM, 1, TMPAl )
ELSE
CALL GGNLG ( DSEED, 1, TRCEM, STDTN, TMPAL )
ENDIF
ELSE

EXPONENTIAL TRACE LENGTH GENERATOR WITH UNIX SYSTEM

TMPA1l (1) = RANDOM (ISEED)

ISEED = IRANDM (ISEED)

TMPAl(l) = -ALOG ( 1. - TMPAl(l) ) * TRCEM
ENDIF

TCLEN = TMPAl(l) / 2.
VON MISES ORIENTATION DISTRIBUTION

IF ( NOPDP.EQ.1 ) THEN

xindx = 1. + ( 0.5*conft )**2 + ( 0.5*conft )**4 / 4.
* + ( 0.5*conft )**6 / 36.
xind. = 1. / ( xindx * 2, * pirad )

UNIX SYSTEM FUNCTION

IF ( NSYST.EQ.2 ) THEN
FREQX = EXP ( CONFT )
CONTINUE
TMPA2 (1) = RANDOM (I3EED)
ISEED = IRANDM (ISEED)
YINDX = TMPA2(1) * PIRAD * 2.
FREQY = EXP ( CONFT * COS( YINDX - THETA ) )
FREQZ = FREQY / FREQX
TMPA2 (1) = RANDOM (ISEED)
ISEED = IRANDM (ISEED)
IF ( TMPA2(1) .GT.FREQZ ) GO TO 99
ORINT = YINDX
ELSE

VMS MODE

CALL GGVMS ( DSEED, CONFT, 1, TMPA2 )
ORINT = TMPA2 (1) + THETA
ENDIF
ENDIF

CURRENTLY (NOPDP.EQ.2) OPTION (WRAPPED NORMAL DISTRIBUTION)
IS IGNORED
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IF ( NOPDP.EQ.2 ) THEN
UNIFORM ORIENTATION DISTRIBUTION

IF ( NOPDP.EQ.3 ) THEN
IF ( NSYST.EQ.1l ) THEN

VMS

CALL GGUBS ( DSEED, 1, TMPA2 )
ELSE

UNIX SYSTEM FUNCTION
TMPA2 (1) = RANDOM (ISEED)
ISEED = IRANDM (ISEED)
ENDIF
ORINT = TMPA2(1) * PIRAD
ENDIF
FIXED ORIENTATION
IF ( NOPDP.EQ.4 ) ORINT = THETA

CALCULATE END POINTS OF EACH TRACE

XCOOR = COORM(KPOIN, 1)
YCOOR = COORM (KPOIN, 2)

XCOR1 = XCOOR + TCLEN * COS (ORINT)
YCOR1 = YCOOR + TCLEN * SIN(ORINT)
XCOR2 = XCOOR - TCLEN * COS (ORINT)
YCOR2 = YCOOR - TCLEN * SIN(ORINT)

CONSIDER THE BOUNDARY CONDITIONS

IF ( YCOR1.GE.HEIGT ) THEN
YCOR1 = HEIGT
IF ( ORINT.EQ.PIRAD/2. j THEN
XCOR1 = XCOOR
ELSE
XCOR1 = XCOOR + ( YCOR1-YCOOR ) / TAN(ORINT)
ENDIF
ENDIF
IF ( YCOR2.GE.HEIGT ) THEN
YCOR2 = HEIGT
IF ( ORINT.EQ.PIRAD/2. ) THEN
XCOR2 = XCOOR
ELSE
XCOR2 = XCOOR + ( YCOR2-YCOOR ) / TAN (ORINT)
ENDIF

ENDIF
IF ( YCOR1.LE.O. ) THEN
YCOR1 = 0.
IF ( ORINT.EQ.PIRAD/2. ) THEN

XCOR1 = XCOOR
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ELSE
XCOR1 = XCOOR + ( YCOR1-YCOOR ) / TAN (ORINT)
ENDIF
ENDIF
IF ( YCOR2.LE.O ) THEN
YCOR2 = 0.

IF ( ORINT.EQ.PIRAD/2. ) THEN
XCOR2 = XCOOR
ELSE
XCOR2 = XCOOR + ( YCOR2-YCOOR ) / TAN (ORINT)
ENDIF
ENDIF
IF ( XCOR1.GE.RANGE ) THEN
XCOR1 = RANGE
YCOR1 = TAN (ORINT) * ( XCOR1-XCOOR ) + YCOOR

ENDIF
IF ( XCOR1.LE.O. ) THEN

XCOR1 = O.

YCOR1 = TAN(ORINT) * ( XCOR1~XCOOR ) + YCOOR
ENDIF
IF ( XCOR2.GE.RANGE ) THEN

XCOR2 = RANGE

YCOR2 = TAN(ORINT) * ( XCOR2-XCOOR ) + YCOOR
ENDIF
IF ( XCOR2.LE.0. ) THEN

XCOR2 = 0.

YCOR2 = TAN(ORINT) * ( XCOR2-XCOOR ) + YCOOR
ENDIF

SLOP1 = XCOR1 * TAN (ANRAD)
SLOP2 = XCOR2 * TAN (ANRAD)
IF ( YCOR1.GT.SLCP1 ) THEN
YCOR3 = YCOOR - YCOR1
XCOR3 = XCOOR - XCOR1
IF ( ABS(XCOR3).LT.0.0001 ) THEN
YCOR1 = TAN (ANRAD) * XCOOR

ELSE
TANTC = YCOR3 / XCOR3
XCOR1 = ( TANTC * XCOR1l - ¥YCOR1l ) /

( TANTC - TAN (ANRAD) )
YCOR1 = TAN(ANRAD) * XCOR1
ENDIF
ENDIF
IF ( YCOR2.GT.SLOP2 ) THEN
YCOR4 = YCOOR - YCOR2
XCOR4 = XCOOR - XCOR2
IF ( ABS (XCOR4) .LT.0.0001 ) THEN
YCOR2 = TAN (ANRAD) * XCOOR
ELSE
TANTC = YCOR4 / XCOR4
XCOR2 = ( TANTC * XCOR2 - YCOR2 ) /
( TANTC - TAN (ANRAD) )
YCOR2 = TAN (ANRAD) * XCOR2
ENDIF
ENDIF
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STORE THE END POINTS OF EACH TRACE INTO COORE

COORE (KPOIN, 1) = XCOR1l
COORE (KPOIN, 2) = YCOR1
COORE (KPOIN, 3) = XCOR2
COORE (KPOIN, 4) = YCOR2

IF ( XCOR1.GT.XCOR2 ) THEN

COORE (KPOIN, 1) = XCOR2
COORE (KPOIN, 2) = YCOR2
COORE (KPOIN, 3) = XCOR1
COORE (KPOIN,4) = YCOR1

ENDIF
IF ( KPOIN.LT.IPOIN ) GO TO 10
IF ( MOPTN.GE.1l ), WRITE THE END POINT COORDINATES

IF ( MOPTN.EQ.1 ) THEN
WRITE (6, 900) IOSET
DO 20 KPOIN = JPOIN, NPOIN
WRITE (6, 910) ( COORE (KPOIN, JDOFN) ,JDOFN = 1,4 )
CONTINUE
ENDIF
IF ( MOPTN.GE.5 ) THEN
IF ( IOSIM.EQ.1.AND.IOSET.EQ.1 )
* WRITE (7,920) NPOIN, ANGLE, HEIGT, RANGE, NOSIM, MOPTN
DO 30 KPOIN = JPOIN, IPOIN
WRITE (7,910) ( COORE (KPOIN,JDOFN),JDOFN = 1,4 )
CONTINUE
ENDIF

FORMAT (//, 5X, ' SIMULATED TRACE PATTERN OF JOINT SET = ', IS,//)
FORMAT (2 (5X,F10.3,5X,F10.3,/))
FORMAT (I5, 3F10.3, I5)

RETURN
END

SUBROUTINE GEOTY ( COORM, COORE, NINPT, MAXPT, NOEFJ, MAXBT )

SUBROUTINE GEOTY EVALUATES THE GEOMETRICALLY
CONTINUOUS JOINT PATHS

IMPLICIT DOUBLE PRECISION (A-H, 0-2)

COMMON/CONTRO/NPOIN, NTRCE, NOSIM, NDOFN, MOPTN, IOSIM, NSYST,
* NOSET, ANGLE, HEIGT, RANGE, SFMAX, WEIGT, NCASE
DIMENSION COORM (NPOIN,2), COORE (NPCIN, 4), NINPT (NPOIN)

TO FIND THE EFFECTIVE JOINT PATHS, CALCULATE THE EFrECTIVE
INTERSECTION POINTS AMONG JOINTS AND SLOPE BOUNDARIES

PIRAD = 3.1415926
= TAN(ANGLE*PIRAD / 180.)
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XAPEX = HEIGT / TANAN

MAXPP = 0

IITER = 0

CONTINUE

MAXPT = 0

MAXBT = 0

NOEFJ = 0

IITER = IITER + 1

DO 30 IPOIN = 1, NPOIN
IF ( IITER.GT.1.AND.NINPT(IPOIN).LT.2 ) GO TO 30
NINPT (IPOIN) = 0
XCOR1 = COORE (IPOIN, 1)
YCOR1 = COORE (IPOIN, 2)
XCOR2 = COORE (IPOIN, 3)
YCOR2 = COORE (IPOIN, 4)
IF ( XCOR2.EQ.XCOR1 ) THEN
SLOP1 = 9.E+10
ELSE
SLOP1 = ( YCOR2-YCOR1l ) / ( XCOR2-XCOR1 )
ENDIF

DO 10 JPOIN = 1, NPOIN

IF ( JPOIN.EQ.IPOIN ) GO TO 10

IF ( IITER.GT.1.AND.NINPT(JPOIN).LT.2 ) GO TO 10
XCOR3 = COORE (JPOIN, 1)

YCOR3 COORE (JPOIN, 2)
XCOR4 = COORE (JPOIN, 3)
YCOR4 = COORE (JPOIN, 4)

CALCULATE THE INTERSECTION POINTS AND CHECK THEIR ADMISSIBILITY

COEF1l = XCOR4 -~ XCOR3
COEF2 = YCOR4 - YCOR3
IF ( COEFl1l.EQ.O0. ) THEN
SLOP2 = 9.E+10
ELSE
SLOP2 = COEF2 / COEri
ENDIF
IF ( SLOP1.EQ.SLOP2 ) GO TO 10
IF ( SLOP1.EQ.9.E+10 ) THEN
XINPT = XCOR1
IF (XINPT.GE.XCOR3.AND.XINPT.LE.XCOR4) THEN
YINPT = SLOP2 * ( XINPT-XCOR3 ) + YCOR3
IF ( YINPT.GE.AMIN1 (YCOR1l, YCOR2) .AND.
YINPT.LE.AMAX1 (YCOR1, YCOR2) ) THEN
NINPT (IPOIN) = NINPT (IPOIN) + 1
MAXPT = MAXPT + 1
GO TO 10
ENDIF
ENDIF
ENDIF
IF ( SLOP2.EQ.9.E+10 ) THEN
XINPT = XCOR3
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IF (XINPT.GE.XCOR1.AND.XINPT.LE.XCOR2 ) THEN
YINPT = SLOP1 * ( XINPT-XCOR1l ) + YCOR1
IF ( YINPT.GE.AMIN1 (YCOR3, YCOR4) .AND.
* YINPT.LE.AMAX1 (YCOR3, YCOR4) ) THEN
NINPT (IPOIN) = NINPT (IPOIN) + 1
MAXPT = MAXPT + 1

GO TO 10
ENDIF
ENDIF
ENDIF
COEF3 = SLOPl * XCORl - SLOP2 * XCOR3
COEF4 = YCOR3 - YCOR1
XINPT = ( COEF3 + COEF4 ) / ( SLOP1l ~ SLOP2 )
YINPT = SLOP1l * (XINPT-XCOR1l) + YCOR1l

IF ( XINPT.LYT.XCOR1.OR.XINPT.GT.XCOR2 ) GO TO 10
IF ( XINPT.LT.XCOR3.OR.XINPT.GT.XCOR4 ) GO TO 10
IF ( YINPT.LT.AMIN1 (YCORl1l, YCOR2) .OR.

* YINPT.GT.AMAX1 (YCOR1l, YCOR2) )} GO TO 10
IF ( YINPT.LT.AMIN1 (YCOR3, YCOR4).OR.
* YINPT.GT.AMAX1 (YCOR3, YCOR4) ) GO TO 10

IF ( YINPT.GT.HEIGT ) GO TO 10

NINPT (IPOIN) = NINPT(IPOIN) + 1
MAXPT = MAXPT + 1
CONTINUE

SEARCH FOR INTERSECTION POINTS WITH SLOPE BOUNDARIES

IF ( AMAX1 (YCOR1, YCOR2).EQ.HEIGT ) THEN
NINPT (IPOIN) = NINPT (IPOIN) + 1
MAXBT = MAXBT + 1
ENDIF
IF ( SLOP1.EQ.TANAN ) GO TO 20
IF ( SLOP1.EQ.9.E+10 ) THEN
XINPT = XCOR1
YINPT = TANAN * XINPT
ELSE
XINPT = ( SLOP1*XCOR1 - YCOR1l ) / ( SLOP1l - TANAN )
YINPT = TANAN * XINPT
ENDIF
IF ( XINPT.EQ.O..AND.YINPT.EQ.O0. ) THEN
XINPT = 1.E-10
YINPT = 1.E-10
ENDIF
IF ( ABS (XINPT-XCOR1) .GT.0.01.AND.
* ABS (XINPT-XCOR2) .GT.0.01 ) GO TO 20
Ir ( ABS(YINPT-AMIN1 (YCOR1,YCOR2)) .GT.0.01.AND.
* ABS (YINPT-AMAX1 (YCOR1, YCOR2)) .GT.0.01 ) GO TO 20
IFr ( YINPT.GT.HEIGT ) GO TO 20
NINPT (IPOIN) = NINPT(IPOIN) + 1
MAXBT = MAXBT + 1

COUNT THE EFFECTIVE TRACES
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CONTINUE
IF ( NINPT(IPOIN).GE.2 ) NOEFJ = NOEFJ + 1
CONTINUE

IFr ( IITER.EQ.1 ) WRITE(6,900) IOSIM
MAXPT = MAXPT / 2 + MAXBT
FIND FURTHER ELIMINATIONS

IF ( MAXPT.EQ.MAXPP ) GO TO 40

MAXPP = MAXPT

IF ( IITER.GT.10 ) THEN
WRITE (6, 930)

ENDIF

GO TO 5

CONTINUE
DATA PORTHOLE

IF ( MOPTN.GE.5 ) THEN
WRITE (7, 950) NOEFJ
DO S0 IPOIN = 1, NPOIN
IF ( NINPT(IPOIN).LT.2 ) GO TO 50
WRITE (7,940) ( COORE (IPOIN, JDOFN),JDOFN = 1,4 )
CONTINUE
ENDIF

FORMAT (//, 3X, ' #*** SIMULATION NUMBER *** = ', I5)

’

FORMAT (//, 5X, ’*** TOO MANY ITERATIONS *##’)
FORMAT (2 (5X, F10.3,5X,F10.3,/))
FORMAT (I5)

RETURN
END

SUBROUTINE KINEM ( CASEO, CASET, PROPT, SVALU, TVALU, COORM,

* COORE, XCONN, YCONN, COORF, NPROP,
* NINPT, NINEP, NMTRL, MAXPT, NOEFJ )

SUBROUTINE KINEM EVALUATES THE TOPOLOGICALLY AND KINEMATICALLY
ADMISSIBLE JOINT PATHS USING MATRIX CONNECTIVITY METHOD

IMPLICIT DOUBLE PRECISION (A-H, 0-2)

COMMON/CONTRO/NPOIN, NTRCE, NOSIM, NDOFN, MOPTN, IOSIM, NSYST,
NOSET, ANGLE, HEIGT, RANGE, SFMAX, WEIGT, NCASE

COMMON/CONTOL/NMODE, SFMIN, MOSIM

COMMON/CNTROL/CRITX(10) , CRITY (10), NCRIT, YCRIT

COMMON/CONROL/NCTMX (10, 2)

COMMON/STATIC/NSTAT, VARMN, DSTEP, NSTEP, ICASE, NREG1l, NREG2

DIMENSION COORM (NPOIN, 2), COORE (NPOIN,d), PROPT(NOSET, 4)

DIMENSION XCONN (NTRCE, NTRCE), YCONN (NTRCE, NTRCE)
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DIMENSION CCTMX(10), CCTMY (10)

DIMENSION MTMP1(10), MTMP2(10)

DIMENSION COORF (NOEFJ,4), NMTRL (NOEFJ)

DIMENSION NPROP (NGSET, 4), NINPT(NPOIN), NINEP (NOEFJ)
DIMENSION SVALU (MOSIM,NSTEP), TVALU (MOSIM, NSTEP)
DIMENSION CASEO (NCASE,NSTEP), CASET (NCASE,NSTEP)

DIMENSION PROBY (30), TPRBY(100)

FIRST, CALCULATES THE INTERSECTION POINTS AMONG JOINTS AND
SLOPE BOUNDARY USING EFFECTIVE TRACES

PIRAD = 3.1415926

TANAN = TAN (ANGLE*PIRAD/180.)
NOMTX = 0

RKPOIN = 0

DO 5 ITRCE = 1, NTRCE

DO 5 JTRCE = 1, NTRCE

XCONN (ITRCE, JTRCE) = 0.
YCONN (ITRCE, JTRCE) = 0.
CONTINUE

JCONT = 0

DO 6 IOSET = 1, NOSET

NOPNT = NPROP (IOSET, 1)

JCONT = JCONT + NOPNT

MTMP1 (IOSET) = JCONT

MTMP2 (IOSET) = JCONT - NOPNT + 1
CONTINUE

DO 420 IPOIN = 1, NPOIN

IF ( NINPT (IPOIN).GE.2 ) THEN
KPOIN = KPOIN + 1
NINEP (KPOIN) = NINPT (IPOIN)

DO 400 IOSET = 1, NOSET
IF ( IPOIN.GE.MTMP2 (IOSET) .AND.IPOIN.LE.MTMP1 (IOSET) )

* NMTRL (KPOIN) = IOSET

CONTINUE

DO 410 IDOFN = 1, 4
COORF (KPOIN, IDOFN) = COORE (IPOIN, IDOFN)

CONTINUE
ENDIF
CONTINUE
KPOIN = 1
DO 50 IPOIN = 1, NOEFJ
ICOUN = 0
KPOIN = KPOIN + 1
XCOR1 = COORF (IPOIN, 1)
YCOR1 = COORF (IPOIN, 2)
XCOR2 = COORF (IPOIN, 3)
YCOR2 = COORF (IPOIN, 4)

IF ( XCOR1l.EQ.XCOR2 ) THEN
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SLOP1 = 9.E+10
ELSE
SLOP1 = ( YCOR2 - YCOR1l ) / ( XCOR2 - XCOR1 )
ENDIF

FIRST, CALCULATE INTERSECTION POINT COORD. (XINPT, YINPT)
WITH SLOPE FACE

IF ( SLOP1.NE.TANAN ) THEN
IF ( SLOP1.EQ.9.E+10 ) THEN

XINPT = XCOR1l
YINPT = TANAN * XINPT
ELSE
XINPT = ( SLOP1*XCOR1 - YCORl ) / ( SLOP1-TANAN )
YINPT = TANAN * XINPT
ENDIF
IF ( XINPT.EQ.O..AND.YINPT.EQ.0.) THEN
XINPT = 1.E-10
YINPT = 1.E-10
ENDIF

IF ( ABS (XINPT-XCOR1l) .GT.0.01.AND.

* ABS (XINPT-XCOR2) .GT.0.01 ) GO TO 10

IF ( ABS (YINPT-AMIN1 (YCOR1, YCOR2)) .GT.0.01 AND.

* ABS (YINPT-AMAX1 (YCOR1, YCOR2)) .GT.0.01 ) GO TO 10

IF ( YINPT.GT.HEIGT.OR.YINPT.LT.0. ) GO TO 10

XCONN (1, KPOIN) = XINPT
XCONN (KPOIN, 1) = XINPT
YCONN (1, KPOIN) = YINPT
YCONN (KPOIN,1) = YINPT
NOMTX = NOMTX + 2
ICOUN = ICOUN + 1

ENDIF

CONTINUE

LPOIN = 1

CALCULATE THE INTERSECTION POINTS AMONG JOINTS

DO 30 JPOIN = 1, NOEFJ
LPOIN = LPOIN + 1
IF ( JPOIN.EQ.IPOIN ) GO TO 30

XCOR3 = COORF (JPOIN, 1)
YCOR3 = COORF (JPOIN, 2)
XCOR4 = COORF (JPOIN, 3)
YCOR4 = COORF (JPOIN, 4)

CALCULATE THE INTERSECTION COORDINATES AND CHECK THEIR
ADMISSIBILITY

COEF1 = XCOR4 - XCOR3
COEF2 = YCOR4 - YCOR3
IF ( COEF1.EQ.0. ) THEN
SLOP2 = 9.E+10
ELSE
SLOP2 = COEF2 / COEri
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ENDIF
IF ( SLOP1.EQ.SLOP2 ) GO TO 30
IF ( SLOP1.EQ.9.E+10 ) THEN
XINPT = XCOR1
IF (XINPT.GE.XCOR3.AND.XINPT.LE.XCOR4 ) THEN
YINPT = SLOP2 * ( XINPT-XCOR3 ) + YCOR3
IF ( YINPT.GE.AMIN1 (YCOR1, YCOR2) .AND.
* YINPT.LE.AMIN1 (YCOR1, YCOR2) .AND.YINPT.LE.HEIGT ) GO TO 20
ENDIF
GO TO 30
ENDIF
IF ( SLOP2.EQ.9.E+10 ) THEN
XINPT = XCOR3
IF ( XINPT.GE.XCOR1.AND.XINPT.LE.XCOR2 ) THEN
YINPT = SLOP1 * ( XINPT-XCOR1l ) + YCOR1
IF ( YINPT.GE.AMIN1 (YCOR3, YCOR4) .AND.

* YINPT.LE.AMAX1 (YCOR3, YCOR4) .AND.YINPT.LE.HEIGT ) GO TO 20
ENDIF
GO TO 30

ENDIF

COEF3 = SLOP1 * XCOR1 - SLOP2 * XCOR3

COEF4 = YCOR3 - YCOR1

XINPT = ( COEF3 + COEF4 ) / ( SLOP1l - SLOP2 )

YINPT = SLOP1 * ( XINPT-XCORl ) + YCOR1

IF ( XINPT.LT.XCOR1.OR.XINPT.GT.XCOR2 ) GO TO 30
IF ( XINPT.LT.XCOR3.OR.XINPT.GT.XCOR4 ) GO TO 30
IF ( YINPT.LT.AMIN1 (YCOR1, YCOR2) .OR.

* YINPT.GT.AMAX1 (YCOR1l, YCOR2) ) GO TO 30
IF ( YINPT.LT.AMIN1 (YCOR3,YCOR4) .OR.
* YINPT.GT.AMAX1 (YCOR3, YCOR4) ) GO TO 30

IF ( YINPT.GT.HEIGT ) GO TO 30

CONTINUE

NOMTX = NOMTX + 1

ICOUN = ICOUN + 1

XCONN (KPOIN, LPOIN) = XINPT
YCONN (KPOIN, LPOIN) = YINPT
CONTINUE

CALCULATE THE INTERSECTION COORDINATE WITH FREE SURFACE

IF ( AMAX1 (YCOR1l,YCOR2) .NE.HEIGT ) GO TO 40
IF ( SLOP1.EQ.9.E+10 ) THEN

XINPT = XCOR1l
ELSE

XINPT

XCOR1 + ( HEIGT-YCOR1l ) / SLOP1
ENDIF

IFr ( ABS (XINPT-XCOR1l).GT.0.01.AND.

* ABS (XINPT-XCOR2) .GT.0.01 ) GO TO 40
YINPT = HEIGT
XCONN (KPOIN, NTRCE)
XCONN (NTRCE, KPOIN)

XINPT
XINPT
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YCONN (KPOIN, NTRCE)
YCONN (NTRCE, KPOIN)

YINPT
YINPT

NOMTX = NOMTX + 2
ICOUN + 1

ICOUN =

CONTINUE

IF ( ICOUN.NE.NINEP (IPOIN) ) WRITE(6,970) ICOUN, NINEP (IPOIN)

CONTINUE
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STORE THE INTERSECTION POINTS FOR PLOTTING

IF ( MOPTN.GE.5 ) THEN

MJOIN = 0
DO 80 ITRCE = 1, NTRCE
KTRCE = ITRCE

DO 70 JTRCE = KTRCE, NTRCE
IF ( XCONN (ITRCE, JTRCE) .LE.O.
WRITE (8, 960) XCONN (ITRCE, JTRCE), YCONN (ITRCE, JTRCE)
MJOIN =
CONTINUE
CONTINUE

MJOIN + 1

WRITE (7, 940) MJOIN, MAXPT

ENDIF

) GO TO 70

DO A MATRIX CONNECTIVITY SEARCHING

CURRENTLY, UP TO 10 (TEN) INTERSECTION POINTS CAN BE CONSIDERED

AS A JOINT PATH

NPATR
NPATH
NMODE
LCOUN
TPATH
SFMIN

DO 300 ICOLl

DO 120 IPATR
DO 110 JDOFN

10

0

0

0

0.

SFMAX
= 1, NTRCE
= 1, NPATR
= 1, NDOFN

NCTM.. (IPATR, JDOFN) = 0

CONTINUE
CCTMX (IPATR) = 0.
CCTMY (IPATR) = 0.
CONTINUE

START SEARCHING : 1ST

IF ( XCONN(1,ICOLl) .EQ.O.

NCTMX(1,1) =1
NCTMX (1,2) = ICOL1

CCTMX (1)
CCTMY (1)

2ND

XCONN (1, ICOL1)
YCONN (1, ICOL1)

) GO TO 300
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DO 290 ICOL2 = 1, NTRCE
IF ( XCONN (ICOL1,ICOL2).EQ.0. ) GO TO 290
IF ( XCONN (ICOL1, ICOL2) .EQ.CCTMX (1) ) GO TO 290
IF ( ICOL2.EQ.NTRCE.AND.XCONN (ICOL1l,NTRCE) .NE.O. ) THEN
NCTMX (2,1) = ICOL1
NCTMX (2,2) = NTRCE
NPATH = NPATH + 1
CCTMX (2) = XCONN (ICOL1, NTRCE)
CCTMY (2) = YCONN (ICOL1, NTRCE)
NITER = 2
CALL KIJET ( 2, CCTMX, CCTMY, KOPTN, YPERT )
CALL FMODE ( NITER, CCTMX, CCTMY, JFLAG, NMTRL, NOEFJ, PROPT,

* SVALU, TVALU )
IF ( JFLAG.EQ.1 )

* CALL PORTH ( NITER, CCTMX, CCTMY, NCTMX, YPERT )
GO TO 290

ENDIF

CCTMX (2) = XCONN (ICOL1, ICOL2)
CCTMY (2) = YCONN (ICOL1, ICOL2)
NCTMX (2,1) = ICOLl
NCTMX (2,2) = ICOL2

MODIFY THE KINEMATIC JOINT PATH BY NOT ALLOWING THE DECLINING
2ND INTERSECTION POINT

IF ( CCTMY(2) .LE.CCTMY (1) ) GO TO 290
3RD

DO 280 ICOL3 = 1, NTRCE
IF ( XCONN (ICOL2,ICOL3) .EQ.O. ) GO TO 280
IF ( XCONN (ICOL2,ICOL3) .EQ.CCTMX (1) ) GO TO 280
IF ( ICOL3.EQ.ICOL1l ) GO TO 280
NCTMX (3,1) = ICOL2
NCTMX (3,2) = ICOL3
CCTMX (3) = XCONN (ICOL2, ICOL3)
CCTMY (3) = YCONN (ICOL2, ICOL3)
IF ( CCTMX(3).GE.CCTMX(2) .AND.CCTMY (3) .LE.CCTMY (2) )
GO TO 280

IF ( ICOL3.EQ.1.AND.CCTMX(3).NE.O. ) THEN
IF ( XCONN (ICOL2,1).GT.CCTMX(1) ) THEN
KOPTN = 0
CALL KINET ( 3, CCTMX, CCTMY, KOPTN, YPERT )
IF ( KOPTN.EQ.1 ) GO TO 280
NPATH = NPATH + 1
TPATH = TPATH + 1.
NITER = -3
CALL FMODE ( NITER, CCTMX, CCTMY, JFLAG, NMTRL, NOEFJ,
PROPT, SVALU, TVALU )
I¥ ( JFLAG.EQ.1 )
CALL PORTH ( NITER, CCTMX, CCTMY, NCTMX, YPERT )
ENDIF
GO TO 280
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ENDIF

NFLAG = 0

IF ( CCTMY(3) .LT.CCTMY(2) ) CALL KINES ( 3, CCTMX, CCTMY, NFLAG )

IF ( NFLAG.EQ.l1l ) GO TO 280

IF ( ICOL3.EQ.NTRCE.AND.XCONN (ICOL2,NTRCE) .NE.O. ) THEN
KOPTN = ~
CALL KINET ; 3, CCTMX, CCTMY, KOPTN, YPERT )
IF ( KOPTN.EQ.1 ) GO TO 280
NPATH = NPATH + 1
NITER = 3
CALL FMODE ( NITER, CCTMX, CCTMY, JFLAG, NMTRL, NOEFJ, PROPT,

* SVALU, TVALU )
IF ( JFLAG.EQ.1 )

* CALL PORTH ( NITER, CCTMX, CCTMY, NCTMX, YPERT )
GO TO 280

ENDIF

4TH

DO 270 ICOL4 = 1, NTRCE

IF ( XCONN (ICOL3, ICOL4) .EQ.O. ) GO TO 270

IF ( XCONN(ICOL3, ICOL4).EQ.CCTMX (1) ) GO TO 270

IF ( XCONN(ICOL3, ICOL4) .EQ.CCTMX(2) ) GO TO 270

IF ( ICOL4.EQ.ICOL1.OR.ICOL4.EQ.ICOL2 ) GO TO 270

NCTMX (4,1) = ICOL3

NCTMX (4,2) = ICOL4

CCTMX (4) = XCONN (ICOL3, ICOL4)

CCTMY (4) = YCONN (ICOL3, ICOL4)

IF ( CCTMX(4).GE.CCTMX(3) .AND.CCTMY (4) .LE.CCTMY (3) )
GO TO 270

IF ( ICOL4.EQ.1.AND.CCTMX(4) .NE.O. ) THEN
IF ( XCONN(ICOL3,1).GT.CCTMX (1) ) THEN
KOPTN = 0
CALL KINET ( 4, CCTMX, CCTMY, KOPTN, YPERT )
IF ( KOPTN.EQ.1 ) GO TO 270
NPATH = NPATH + 1
TPATH = TPATH + 1.
NITER = -4
CALL FMODE ( NITER, CCTMX, CCTMY, JFLAG, NMTRL, NOEFJ,
PROPT, SVALU, TVALU )
IF ( JFLAG.EQ.1 )
CALL PORTH ( NITER, CCTMX, CCTMY, NCTMX, YPERT )
ENDIF
GO TO 270
ENDIF

NFLAG = 0

IF ( CCTMY(4) .LT.CCTMY(3) ) CALL KINES ( 4, CCTMX, CCTMY, NFLAG )

IF ( NFLAG.EQ.1 ) GO TO 270

IF ( ICOL4.EQ.NTRCE.AND.XCONN (ICOL3,NTRCE) .NE.0. ) THEN
KOPTN = 0

- -
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CALL KINET ( 4, CCTMX, CCTMY, KOPTN, YPERT )
IF ( KOPTN.EQ.1 ) GO TO 270
NPATH = NPATH + 1

NITER = 4
CALL FMODE ( NITER, CCTMX, CCTMY, JFLAG, NMTRL, NOEFJ, PROPT,
* SVALU, TJ/ALU )
IF ( JFLAG.EQ.1 )
* CALL PORTH ( NITER, CCTMX, CCTMY, NCTMX, YPFRT )
GO TO 270
ENDIF
STH

DO 260 ICOLS = 1, NTRCE

IF ( XCONN(ICOL4, ICOL5) .EQ.O. ) GO TO 260
IF ( XCONN (ICOL4,ICOLS).EQ.CCTMX(1l) ) GO TO 260
IF ( XCONN(ICOL4, ICOLS) .EQ.CCTMX(2) ) GO TO 260
IF ( XCONN(ICOL4, ICOLS) .EQ.CCTMX(3) ) GO TO 260
IF ( ICOLS.EQ.ICOL1.0OR.
* ICOL5.EQ.ICOL2.0R.ICOL5.EQ.ICOL3 ) GO TO 260
NCTMX (5,1) = ICOLA4

NCTMX (5,2) = ICOLS

CCTMX (5) = XCONN (ICOL4, ICOLS)

CCTMY (5) = YCONN (ICOL4, ICOLS)

IF ( CCTMX(5).GE.CCTMX (4) .AND.CCTMY (5) .LE.CCTMY (4) )
* GO TO 260

IF ( ICOL5.EQ.1.AND.CCTMX(5).NE.O. ) THEN
IF ( XCONN(ICOL4,1).GT.CCTMX (1) ) THEN

KOPTN = 0
CALL KINET ( 5, CCTMX, CCTMY, KOPTN, YPERT )
IF ( KOPTN.EQ.1 ) GO TO 260
NPATH = NPATH + 1
TPATH = TPATH + 1.
NITER = -5
CALL FMODE ( NITER, CCTMX, CCTMY, JFLAG, NMTRL, NOEFJ,

* PROPT, SVALU, TVALU )
IF ( JFLAG.EQ.1 )
ol CALL PORTH ( NITER, CCTMX, CCTMY, NCTMX, YPERT )
ENDIF
GO TO 260
ENDIF
NFLAG = 0

IF ( CCTMY(5).LT.CCTMY(4) ) CALL KINES ( 5, CCTMX, CCTMY, NFLAG )
IF ( NFLAG.EQ.1 ) GO TO 260

IF ( ICOL5.EQ.NTRCE.AND.XCONN (ICOL4,6 NTRCE) .NE.O, ) THEN
KOPTN = 0
CALL KINET ( 5, CCTMX, CCTMY, KOPTN, YPERT )
IF ( KOPTN.EQ.l1l ) GO TO 260
NPATH = NPATH + 1
NITER = 5
CALL FMODE ( NITER, CCTMX, CCTMY, JFLAG, NMTRL, NOEFJ, PROPT,

* SVALU, TVALU )
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IF ( JFLAG.EQ.1 )
* CALL PORTH ( NITER, CCTMX, CCTMY, NCTMX, YPERT )
GO TO 260
ENDIF
6TH

DO 250 ICOL6 = 1, NTRCE

IF ( XCONN (ICOL5, ICOL6) .EQ.O. ) GO TO 250
Ir ( XCONN(ICOLS, ICOL6) .EQ.CCTMX(1l) ) GO TO 250
IF ( XCONN(ICOL5,ICOL6) .EQ.CCTMX(2) ) GO TO 250
IF ( XCONN(ICOLS,ICOL6) .EQ.CCTMX{(3) ) GO TO 250
IF ( XCONN(ICOLS, ICOL6) .EQ.CCTMX(4) ) GO TO 250
IF ( ICOL6.EQ.ICOL1.OR.ICOL6.EQ.ICOL2.UR,

* 1COL6 .EQ.ICOL3.OR.ICOL6.EQ.ICOL4A ) GO TO 250
NCTMX (6,1) = ICOLS
NCTMX (6,2) = ICCL6
CCTMX (6) = XCONN (ICOLS, ICOL6)
CCTMY (6) = YCONN (ICOLS, ICOL6)
IF ( CCTMX(6) .GE.CCTMX(5) .AND.CCTMY (6) .LE.CCTMY (5) )
* GO TO 250

IF ( {COL6.EQ.1.AND.CCTMX(6) .NE.O. ) THEN
IF ( XCONN(ICOLS5,1).GT.CCTMX(1l) ) THEN
ROPTN = 0
CALL KINET ( 6, CCTMX, CCTMY, KOPTN, YPERT )
IF ( KOPTN.EQ.1 ) GO TO 250
NPATH = NPATH + 1
TPATH = TPATH + 1.

NITER -6
CALL FMODE ( NITER, CCTMX, CCTMY, JFLAG, NMTRL, NOErJ,
* PROPT, SVALU, TVALU )
Ir ( JFLAG.EQ.1 )
* CALL PORTH ( NITER, CCTMX, CCTMY, NCTMX, YPERT )
ENDIF
GO TO 250
ENDIF
NFLAG = O

IF ( CCTMY(6).LT.CCTMY(S) ) CALL KINES ( 6, CCTMX, CCTMY, NFLAG )
IF ( NFLAG.EQ.l1l ) GO TO 250

IF ( ICOL6.EQ.NTRCE.AND.XCONN(ICOL5,NTRCE) .NE.O. ) THEN
KOPTN = 0
CALL KINET ( 6, CCTMX, CCTMY, XOPTN, YPERT )
IF ( KOPTN.EQ.1 ) GO TO 250
NPATH = NPATH + 1

NITER = 6

CALL FMODE ( NITER, CCTMX, CCTMY, JFLAG, NMTRL, NOE¥J, PROPT,
* SVALU, TVALU )

IF ( JFLAG.FQ.1 )
» CALL PORTH ( NITER, CCTMX, CCTMY, NCTMX. YPERT )

GO TO 250
ENDIP
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7TH

DO 240 ICOL7 = 1, NTRCE

IF ( XCONN(ICOL6,ICOL7) .EQ.O. ) GO TO 240
IF ( XCONN(ICOL6, ICOL7) .EQ.CCTMX(1l) ) GO TO 240
IF ( XCONN(ICOL6, ICOL7) .EQ.CCTMX(2) ) GO TO 240
IF ( XCONN(ICOL6,ICOL7) .EQ.CCTMX(3) ) GO TO 240
IF ( XCONN(ICOL6, ICOL7) .EQ.CCTMX(4) ) GO TO 240
IF ( XCONN (ICOL6, ICOL7) .EQ.CCTMX(5) ) GO TO 240
IF ( ICOL7.EQ.ICOL1.0OR.ICOL7.EQ.ICOL2.0OR.

* ICOL7.EQ.ICOL3.0R.ICOL7.EQ.ICOL4.OR.

* ICOL7.EQ.ICOLS5 ) GO TO 240

NCTMX (7,1) = ICOL6

NCTMX (7,2) = ICOL7

CCTMX (7) = XCONN (ICOL6, ICOL7)

CCTMY (7) = YCONN(ICOL6, ICOL7)

IF ( CCTMX(7) .GE.CCTMX (6) .AND.CCTMY (7) .LE.CCTMY (6) )

* GO TO 240

IF ( ICOL7.EQ.1.AND.CCTMX(7).NE.O. ) THEN
IF ( XCONN(ICOL6,1).GT.CCTMX (1) ) THEN
KOPTN = 0
CALL KINET ( 7, CCTMX, CCTMY, KOPTN, YPERT )
IF ( KOPTN.EQ.1 ) GO TO 240
NPATH = NPATH + 1
TPATH = TPATH + 1.
NITER = -7
CALL FMODE ( NITER, CCTMX, CCTMY, JFLAG, NMTRL, NOEFJ.

* PROPT, SVALU, TVALU )

IF ( JFLAG.EQ.1 )
CALL PORTH ( NITER, CCIMX, CCTMY, NCTMX, YPERT )
ENDIF
GO TO 240
ENDIF

NFLAG = 0
IF ( CCTMY(7) .LT.CCTMY (6) ) CALL KINES ( 7, CCTMX, CCTMY, NFLAG )
IF ( NFLAG.EQ.1l ) GO TO 240

IF ( ICOL7.EQ.NTRCE.AND.XCONN(ICOL6,NTRCE) .NE.O. ) THEN
KOPTN = 0
CALL KINET ( 7, CCTMX, CCTMY, KOPTN, YPERT )
IF ( KOPTN.EQ.1l ) GO TO 240
NPATH = NPATH + 1
NITER = 7
CALL FMODE ( NITER, CCTMX, CCTMY, JFLAG, NMTRL, NOEFJ, PROPT,
SVALU, TVALU )
IF ( JFLAG.EQ.1 )
CALL PORTH ( NITER,CCTMX, CCTMY, NCTMX, YPERT )
GO TO 240
ENDIF

8TH

DO 230 ICOL8 = 1, NTRCE
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IF ( XCONN(ICOL7,ICOL8).EQ.O. ) GO TO 230
IF ( XCONN(ICOL7,ICOL8) .EQ.CCTMX(1l) ) GO TO 230
IF ( XCONN(ICOL7,ICOLS).EQ.CCTMX(2) ) GO TO 230
IF ( XCONN (ICOL7,ICOLS8) .EQ.CCTMX(3) ) GO TO 230
IF ( XCONN (ICOL7, ICOL8) .EQ.CCTMX(4) ) GO TO 230
IF ( XCONN(ICOL7,1COL8) .EQ.CCTMX(5) ) GO TO 230
IF ( XCONN (ICOL7,ICOLS8) .EQ.CCTMX(6) ) GO TO 230
IF ( ICOL8.EQ.ICOL1.OR.ICOL8.EQ.ICOL2.0OR.
* ICOL8.EQ.ICOL3.0OR.ICOLS8.EQ.ICOL4.OR.
* ICOL8.EQ.ICOL5.0R.ICOLS.EQ, ICOL6 ) GO TO 230

NCTMX (8,1) = ICOL7

NCTMX (8,2) = ICOLS

CCTMX (8) = XCONN (ICOL7, ICOL8)

CCTMY (8) = YCONN (ICOL7, ICOLS)

IF ( CCTMX(8) .GE.CCTMX(7) .AND.CCTMY (8) .LE.CCTMY (7) )

* GO TO 230

IF ( ICOL8.EQ.1.AND.CCTMX(8).NE.O. ) THEN
IF ( XCONN(ICOL7,1).GT.CCTMX(1l) ) THEN
KOPTN = 0
CALL KINET ( 8, CCTMX, CCTMY, KOPTN, YPERT )
IF ( KOPTN.EQ.1 ) GO TO 230

NPATH = NPATH + 1
TPATH = TPATH + 1.
NITER = -8
CALL FMODE ( NITER, CCTMX, CCTMY, JFLAG, NMTRL, NOEFJ,
* PROPT, SVALU, TVALU )
IF ( JFLAG.EQ.1 )
* CALL PORTH ( NITER, CCTMX, CCTMY, NCTMX, YPERT )
ENDIF
GO TO 230
ENDIF
NFLAG = 0

IF ( CCTMY (8) .LT.CCTMY(7) ) CALL KINES ( 8, CCTMX, CCTMY, NFLAG )

IF ( NFLAG.EQ.1 ) GO TO 230

IF ( ICOLS.EQ.NTRCE.AND.XCONN (ICOL7,NTRCE) .NE.O. ) THEN
KOPTN = 0
CALL KINET ( 8, CCTMX, CCTMY, KOPTN, YPERT )
IF ( KOPTN.EQ.1 ) GO TO 230
NPATH = NPATH + 1
NITER = 8

CALL FMODE ( NITER, CCTMX, CCTMY, JFLAG, NMTRL, NOEFJ, PROPT,
* SVALU, TVALU )

IF ( JFLAG.EQ.1 )
CALL PORTH ( NITER, CCTMX, CCTMY, NCTMX, YPERT )
GO TO 230
ENDIF

9TH
DO 220 ICOLY9 = 1, NTRCE

IF ( XCONN (ICOLS, ICOLY9) .EQ.0. ) GO TO 220
DO 180 JITER = 1, 7
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IF ( XCONN (ICOLS8, ICOL9) .EQ.CCTMX (JITER) ) GO TO 220
180 CONTINUE

IF ( ICOL9.EQ.ICOL1.OR.ICOL9.EQ.ICOL2.0R.ICOL9.EQ.ICOL3.OR.
* ICOL9.EQ.ICOL4.OR.ICOL9.EQ.ICOLS.0R.ICOLY.EQ.ICOL6.OR.
* ICOL9.EQ.ICOL7 ) GO TO 220

NCTMX(9,1) = ICOLS

NCTMX (9,2) = ICOL9

CCTMX (9) = XCONN (ICOLS, ICOL9)

CCTMY (9) = YCONN (ICOLS, ICOL9)

IF ( CCTMX(9) .GE.CCTMX (8) .AND.CCTMY (9) .LE.CCTMY (8) )

* GO TO 220
c
IF ( ICOL9.EQ.1.AND.CCTMX(9) .NE.0. ) THEN
IF ( XCONN (ICOLS,1l) .GT.CCTMX(1) ) THEN
KOPTN = 0
CALL KINET ( 9, CCTdZ, CCTMY, KOPTN, YPERT )
IF ( KOPTN.EQ.1 ) GO TO 220
NPATH = NPATH + 1
TPATH = TPATH + 1.
NITER = -9
CALL FMODE ( NITER, CCTMX, CCTMY, JFLAG, NMTRL, NOEFJ,
* PROPT, SVALU, TVALU )
iIF ( JFLAG.EQ.1 )
* CALL PORTH ( NITER, CCTMX, CCTMY, NCTMX, YPERT )
ENDIF
GO TO 220
ENDIF
c
NFLAG = 0
IF ( CCTMY (9) .LT.CCTMY(8) ) CALL KINES ( 9, CCTMX, CCTMY, NFLAG )
IF ( NFLAG.EQ.1 ) GO TO 220
c
IF ( ICOL9.EQ.NTRCE.AND.XCONN (ICOL8,NTRCE) .NE.O. ) THEN
KOPTN = 0
CALL KINET ( 9, CCTMX, CCTMY, KOPTN, YPERT )
IFf ( KOPTN.EQ.1 ) GO TO 220
NPATH = NPATH + 1
NITER = 9
CALL FMODE ( NITER, CCTMX, CCTMY, JFLAG, NMTRL, NOEFJ, PROPT,
* SVALU, TVALU )
IF ( JFLAG.EQ.1 )
* CALL PORTH ( NITER, CCTMX, CCTMY, NCTMX, YPERT )
GO TO 220
ENDIF
c
c 10TH
c

DO 210 ICOLO = 1, NTRCE

IF ( XCONN(ICOL9,ICOLO) .EQ.0. ) GO TO 210

20 190 JITER =1, 8

IF ( XCONN (ICOL9, ICOLO) .EQ . CCTMX(JITER) ) GO TO 210
190 CONTINUE

IF ( ICOLO.EQ.ICOL1.OR.ICOLO.EQ.ICOL2.0OR.ICOLO.EQ.ICOL3.0OR.
* ICOLO.EQ.ICOid . OR.ICOLO.EQ.ICOL5.0R.ICOLO.EQ,ICOL6.OR,
* ICOL0.EQ.ICOL7.0R.ICOLO.EQ.ICOL8 ) GO TO 210
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NCTMX (10, 1) ICOL9

NCTMX (10, 2) ICOLO

CCTMX (10) = XCONN (ICOL9, ICOLO)

CCTMY (10) = YCONN (ICOLSY, ICOLO)

IF ( CCTMX(10) .GE.CCTMX(9) .AND.CCTMY (10) .LE.CCTMY (9) )

* GO TO 210

IF ( ICOLO.EQ.1.AND.CCTMX(10).NE.O. ) THEN
IF ( XCONN (ICOLY,1).GT.CCTMX(1l) ) THEN

KOPTN = 0
CALL KINET ( 10, CCTMX, CCTMY, KOETN, YPERT )
IF ( KOPTN.EQ.1l ) GO TO 210
NPATH = NPATH + 1
TPATH = TPATH + 1.
NITER = -10

CALL FMODE ( NITER, CCTMX, CCTMY, JFLAG, NMTRL, NOEFJ,

* PROPT, SVALU, TVALU )

IF ( JFLAG.EQ.1 )

* CALL PORTH ( NITER, CCTMX, CCTMY, NCTMX, YPERT )

ENDIF
GO TO 210
ENDIF

IF ( ICOLO.EQ.NTRCE.AND.XCONN (ICOL9,NTRCE).NE.0. ) THEN
KOPTN = 0
CALL KINET ( 10, CCTMX, CCTMY, KOPTN, YPERT )
IF ( KOPTN.EQ.1 ) GO TO 210
NPATH = NPATH + 1
NITER = 10

CALL FMODE ( NITER, CCTMX, CCTMY, JFLAG, NMTRL, NOEFJ,
* SVALU, TVALU )
IF ( JFLAG.EQ.1 )
* CALL PORTH ( NITER, CCTMX, CCTMY, NCTMX, YPERT )
GO TO 210
ENDIF

LCOUN = LCOUN + 1

CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
IF¥ ( LCOUN.GT.O ) WRITE(6,950) LCOUN

STORE THE TOTAL NUMBER OF EFFECTIVE JOINT PATHS
MPATH = TPATH

WRITE (6, 920) NPATH, MPATH
IF ( MOPTN.GE.5 ) WRITE(7,940) XNPATH, MPATH

PROPT,
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TOTAL JOINT PATHES WHICH ARE MECHANICALLY UNSTABLE : NMODE

WRITE (6, 930) NMODE
WRITE (9, 925) ICASE, IOSIM, NPATH, NMODE
WRITE (7, 945) NMODE
IF ( NMODE.GE.l ) THEN
WRITE (6,990) SFMIN
CALL PORTH ( NCRIT, CRITX, CRITY, NCTMX, YCRIT )
WRITE (8, 965) SFMIN
ENDIF

STORE THE STATISTICAL INFORMATION INTO TAPE 9

IF ( NSTAT.GT.O.AND.MOPTN.GE.S5 ) THEN
DO 500 ISTEP = 1, NSTEP
VALUE = VARMN + (ISTEP-1) * DSTEP
WRITE (9, 955) VALUE, SVALU(IOSIM, ISTEP), TVALU (IOSIM,ISTEP)
CONTINUE

ENDIF

IF ( IOSIM.EQ.NOSIM.AND.NSTAT.GT.0 ) THEN
IF ( ICASE.EQ.NCASE ) WRITE (6, 975)
DO 600 ISTEP = 1, NSTEP
SVALE = 0.
TVALE = 0.
DO 550 JOSIM = 1, NOSIM

SVALE = SVALE + SVALU(JOSIM, ISTEP)
TVALE = TVALE + TVALU(JOSIM, ISTEP)
CONTINUE

SVALU (MOSIM, ISTEP) = SVALE
TVALU (MOSIM, ISTEP) = TVALE
VALUE = VARMN + ( ISTEP - 1 ) * DSTEP

CASEO (ICASE, ISTEP)
CASET (XICASE, ISTEP)
IF ( ICASE.EQ.NCASE )
WRITE (6, 956) VALUE, (CASEO(JCASE,ISTEP), CASET (JCASE, ISTEP),
JCASE=1, NCASE)
CONTINUE
ENDIF

SVALE
TVALE

STORE THE FINAL STABILITY ANALYSIS ONTO FILES

IF ( ICASE.EQ.NCASE.AND.IOSIM.EQ.NOSIM.AND.

NSTAT.NE.O ) THEN

WRITE (9, 940) NCASE, NSTEP, NOSIM, NSTAT

WRITE (9, 935)

WRITE (6, 980)

DO 710 ISTEP = 1, NSTEP

VALUE = VARMN + (ISTEP-1) * DSTEP

DO 715 JCASE = 1, NCASE

IF ( CASEO(JCASE, ISTEP) .EQ.0. ) THEN
PROBY (JCASE) = 0.

ELSE
PROBY (JCASE) = CASET (JCASE, ISTEP) / CASEO (JCASE, ISTEP)

ENDIF
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715 CONTINUE
WRITE (6, 955) VALUE, (PROBY (JCASE),JCASE=1, NCASE)
WRITE (9, 955) VALUE, (PROBY (JCASE), JCASE=1,NCASE)
710 CONTINUE

(o CALCULATE THE PROBABILITY OF FAILURE OF EACH VOLUME OR DIP

WRITE (9, 935)
WRITE (6, 985)
DO 730 JSTEP
TPRBY (JSTEP)
DO 720 JCASE
TPRBY (JSTEP)
720 CONTINUE
730 CONTINUE
DO 750 JSTEP = 1, NSTEP
VALUE = VARMN + (JSTEP-1) * DSTEP
DO 740 JCASE = 1, NCASE
IF ( TPRBY (JSTEP) .EQ.0. ) THEN
PROBY (JCASE) = 0.
ELSE
PROBY (JCASE) = CASET (JCASE,JSTEP) / TPRBY (JSTEP)
ENDIF
740 CONTINUE
WRITE (6, 960) VALUE, (PROBY (KCASE),KCASE=1,NCASE)
WRITE (9, 960) VALUE, (PROBY (KCASE),KCASE=1,NCASE)

750 CONTINUE l
C

1, NSTEP
0.
1, NCASE

TPRBY (JSTEP) + CASET (JCASE, JSTEP)

C STORE THE INFORMATION ONTO TAPE 9

WRITE (9, 935)
DO 760 KSTEP = 1, NSTEP
VALUE = VARMN + ( KSTEP-1 ) * DSTEP
WRITE (9, 956) VALUE, (CASEO (JCASE,KSTEP), CASET (JCASE,KSTEP),
* JCASE=1, NCASE)
760 CONTINUE
ENDIF
c
920 FORMAT(//, 5X, ’'TOTAL NO. OF REAL EFFECTIVE PATHS
* /. 5X, 'TOTAL NO. OF FACE TO FACE PATHS = ', I5 )
925 FORMAT (415)
930 FORMAT(//, 5X, ’'TOTAL NO. OF UNSTABLE JOINT PATHS = ', I5 )

’

]
~
-
n

935 FORMAT (/)
940 FORMAT (415)
945 FORMAT (I5)
950 FORMAT(//, 5X, ’'*#% 10 CONSECUTIVE SEARCHING ORDER IS NOT ',
* ' SUFFICIENT #n%’,
* /, 71X, 'TOTAL PATHS OVER 10 JOINTS ARE = ', IS5 )
955 FORMAT(6X, F7.2, 5(F7.2,3x))
956 FORMAT (6X, r7.2, 5(F7.2,3X,r7.2,3X))
960 FORMAT (6F10.3)
965 FORMAT(F10.3)
970 FORMAT(//, 5X, ’'*** WARNING #*#w’
* /., 7X, 'CALCULATED INTERSECTION POINTS = ', IS,
* /., 17X, ’'STORED INTERSECTION POINTS = ‘, IS )




-294-
975 FORMAT(//, 5X, 'TOTAL NUMBER OF JOINT PATHS’,
* /, 4X, 'VALUE TOTAL PATHS UNSTABLE PATHS',
* /)
980 FORMAT(//, 5X, 'P£ AT EACH VOLUME CATEGORY',
* /., 3X, 'INCREMENT’,b3X,’'Pf FOR EACH CASE’,/)
985 FORMAT(//, 5X, ’'Pf OF EACH VOLUME AMONG UNSTABLE PATHS',
* /., 4X, ’'INCREMENT’, 6X, 'P£f FOR EACH CASE’', /)
990 FORMAT(//, 5X, 'MIN. FACTOR OF SAFETY = ', rio.3,
* /. 7X, '’ ( RESISTING FORCE / DRIVING FORCE )’ )
c
RETURN
END
cce
c
SUBROUTINE PORTH ( LITER, CCTMX, CCTMY, NCTMX, YPERT )
c
c SUBROUTINE PORTH STORES THE JOINT PATH COORDINATES
c IN FILE 8
c
COMMON/CONTRO/NPOIN, NTRCE, NOSIM, NDOFN, MOPTN, IOSIM, NSYST,
* NOSET, ANGLE, HEIGT, RANGE, SFMAX, WEIGT, NCASE
DIMENSION CCTMX (10), CCTMY (10), NCTMX(10,2)
c
ANRAD = 3.1415926 / 180.
XPERT = -0.5
XRANG = HEIGT / TAN (ANGLE*ANRAD)
NITER = ABS (LITER)
C

IF ( MOPTN.GE.5 ) THEN
WRITE (8, 910) NITER
DO 10 IITER = 1,NITER
WRITE (8, 920) CCTMX (IITER), CCTMY (IITER)
10 CONTINUE
ENDIF
IF ( MOPTN.GE.5 ) THEN
IF ( LITER.LT.0 ) THEN
KITER = NITER + 1
WRITE (8, 910) KITER
DO 20 IITER = 1, NITER
CCTMX1 = CCTMX (IITER) + XPERT
CCTMY1 = CCTMY (IITER) + YPERT
WRITE (8, 920) CCTMX1l, CCTMY1
20 CONTINUE
CCTMX1 = CCTMX (1) + XPERT
CCTMY1l = CCTMY (1) + YPERT
WRITE (8, 920) CCTMX1, CCTMY1
ELSE
KITER = NITER + 2
WRITE (8, 910) KITER
DO 30 IITER = 1, NITER
CCTMX1 = CCTMX(IITER) + XPERT
CCTMY1 = CCTMY (IITER) + YPERT
WRITE (8, 920) CCTMX1, CCTMY1
30 CONTINUE
CCTMX1 = XRANG + XPERT
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CCTMY1 = HEIGT + YPERT
WRITE (8, 920) CCTMX1, CCTMY1
CCTMX1 = CCTMX(1) + XPERT
CCTMY1 = CCTMY (1) + YPERT
WRITE (8, 920) CCTMX1, CCTMY1
ENDIF
ENDIF

910 FORMAT (I5)
920 FORMAT (2F10.3)

RETURN
END
cccC

(o]

SUBROUTINE KINES ( NITER, CCTMX, CCTMY, NFLAG )

SUBROUTINE LINES TESTS WHETHER THE ASSUMED JOINT PATH IS
KINEMATICALLY ADMISSIBLE OR NOT.

aaaoan

DIMENSION CCTMX (10), CCTMY (10)

(@]

NFLAG 0

ITER2 = NITER - 2

XCOR1 CCTMX (ITER1)
YCOR1 CCTMY (ITER1)
XCOR2 CCTMX (ITER2)
YCOR2 CCTMY (ITER2)
XCOOR CCTMX (NITER)
YCOOR CCTMY (NITER)

W nunu

IF ( YCOR1.EQ.YCOR2 ) THEN
IF ( YCOOR.LT.YCOR1 ) THEN
NFLAG = 1 °
GO TO 50
ENDIF
ELSE
IF ( XCOR1.EQ.XCOR2 ) THEN
IF ( XCOOR.GT.XCOR1 ) THEN
NFLAG = 1
GO TO 50
ENDIF
ENDIF
SLOPE = ( YCOR2 - YCORl ) / ( XCOR2 - XCOR1 )
YCOR3 ( YCOR2-YCOR1 ) * ( XCOOR-XCOR1l ) / ( XCOR2-XCOR1 )
* + YCOR1
IF ( SLOPE.GT.O..AND.YCOR3.GT.YCOOR ) NFLAG = 1
IF ( SLOPE.LT.O..AND.YCOR3.LT.YCOOR ) NFLAG = 1
“ENDIF

o
50 CONTINUE
o]

RETURN

; i
ITER]1 NITER - 1

i
—




ccc

(]

aaaoaoaa
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END

SUBROUTINE KINET ( MITER, CCTMX, CCTMY, KOPTN, YPERT )

SUBROUTINE KINET CHECKS THE ADMISSIBILITY OF
AN ASSUMED JOINT PATH USING MINIMUM DIP AND
PERTURBATION BEHAVIOR

DIMENSION CCTMX(10), CCTMY (10)
DIMENSION SLOPE (10)

PIRAD
XPERT
KOPTN

3.1415926
-0.5
0

FIND THE MINIMUM DIP

MPITR = MITER - 1

IF ( MITER.EQ.2 ) GO TO 30

DO 10 IITER = 1, MPITR

JITER = IITER + 1

XCOR1 CCTMX (1ITER)

YCOR1 CCTMY (IITER)

XCOR2 CCTMX (JITER)

YCOR2 CCTMY (JITER)

IF ( XCOR1.EQ.XCOR2 ) XCOR2 = XCOR2 + 1.E-10
DIPAN = ( YCOR2 - YCOR1l ) / ( XCOR2 - XCOR1 )
SLOrE (IITER) = ATAN (DIPAN)

Ir ( SLOPE(IITER) .LT.0. ) SLOPE(IITER) = SLOPE(IITER) + PIRAD
IF ( XCOR2.LT.XCOR1l.AND.YCOR2.LT.YCOR1 )

* SLOPE (IITER) = SLOPE (IITER) + PIRAD

DETERMINE MIN. DIP ANGLE ( RAD. )

IF ( IITER.EQ.1 ) THEN
SLMIN = SLOPE (1)
INDSP = 1
ELSE
IF ( SLOPE(IITER).GT.O..AND.SLOPE (IITER).LT.SLMIN ) THEN
SLMIN = SLOPE (IITER)
INDSP = IITER
ENDIF
ENDIF

CONTINUE
CHECK THE MOBILITY OF A JOINT PATH

DO 20 IITER = 1, MPITR
IF ( SLOPE(IITER) .LT.PIRAD ) GO TO 20
SLTRY = SLOPE (IITER) - PIRAD
IF ( SLTRY.GT.SIMIN ) THEN
KOPTN = 1
RETURN
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ENDIF
CONTINUE

FIND PURTURBED Y-COORDINATE
CONTINUE

IF ( MITER.EQ.2 ) THEN
YPERT = ( CCTMY(2)-CCTMY (1) ) / ( CCTMX(2)-CCTMX(1l) )

* * ( XPERT )
ELSE
YPERT = SIMIN * ( XPERT )
ENDIF
RETURN
END

SUBROUTINE FrMODE ( LITER, CCTMX, CCTMY, JFLAG, NMTRL, NOEFJ,
* PROPT, SVALU, TVALU )

SUBROUTINE FMODE EVALUATES THE MECHANICAL FAILURE MODE
OF AN ASSUMED JOINT PATH USING COULOMB’S SHEAR FAILURE
CRITERION

COMMON/CONTRO/NPOIN, NTRCE, NOSIM, NDOFN, MOPTN, IOSIM, NSYST,
* NOSET, ANGLE, HEIGT, RANGE, SFMAX, WEIGT, NCASE
COMMON/CONTOL/NMODE, SFMIN, MOSIM

COMMON/CNTROL/CRITX (10), CRITY(10), NCRIT, YCRIT

COMMON /CONROL/NCTMX (10, 2)

COMMON/STATIC/NSTAT, VARMN, DSTEP, NSTEP, ICASE, NREG1l, NREG2
DIMENSION NMTRL (NOEFJ), PROPT (NOSET, 7)

DIMENSION CCTMX (10), CCTMY(10), TLENG(10), DIPTH(10)

DIMENSION SVALU (MOSIM,NSTEP), TVALU (MOSIM, NSTEP)

PIRAD = 3.1415926

ANRAD = PIRAD / 180.

XRANG = HEIGT / TAN (ANGLE*ANRAD)
SLOPF = TAN (ANGLE*ANRAD)

JFLAG = 0

CALCULATES THE WHOLE AREA

KITER = 0
AREAT = 0.
NITER = ABS (LITER) - 1

DO 40 IITER = 1, NITER
DIPTH(IITER) = 0.

JITER = IITER + 1
XCOR1 = CCTMX (IITER)
XCOR2 = CCTMX (JITER)
YCOR1 = CCTMY (IITER)
YCOR2 = CCTMY (JITER)
XDIFF = XCOR2 - XCOR1
YDIFF = YCOR2 - YCOR1

TLENG (IITER) = SQRT( XDIFF**2 4 YDIFF#*2 )
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IF ( XDIFF.EQ.0. ) GO TO 40
SLOPE = YDIFF / XDIFF
IF ( XCOR2.LT.XCOR1.AND.YCOR2.LE.YCOR1l ) SLOPE = -SLOPE
IF ( XCOR2.GT.XCOR1.AND.YCOR2.LT.YCORl ) THEN
WRITE (6, 910)
RETURN
ENDIF

IF ( SLOPE.LT.0. ) GO TO 20
KITER = KITER + 1
IF ( KITER.EQ.1l ) THEN
SLMIN = SLOPE
MINJT = 1

ELSE
IF ( SLOPE.LT.SLMIN ) THEN
SLMIN = SLOFPE
MINJT = IITER
ENDIF
ENDIF
DIPTH(IITER) = SLOPE
JOINT = NCTMX(MINJT,2) - 1
CONTINUE

IFr ( XCOR1.GE.XRANG.AND.XCOR2.GE.XRANG ) GO TO 30
IF ( XCOR1.LT.XRANG.AND.XCOR2.LT.XRANG ) THEN

AREAl = 0.5 * ( 2.* HEIGT - YCOR1 -~ YCOR2 ) * ABS (XDIFFr)

YCOR1 = SLOPF * XCOR1

YCOR2 = SLOPF * XCOR2

AREA2 = 0.5 * ( 2.* HEIGT - YCOR1 -~ YCOR2 ) * ABS (XDIFTr)
ELSE

AREAl = 0.5 * ( 2.* HEIGT - YCORl - YCOR2 ) * ABS (XDIFF)
IF ( SLOPE.GE.O. ) THEN
XCOOR = XCOR1
ELSE
XCOOR = XCOR2
ENDIF
YCOOR = SLOPF * XCOOR
AREA2 = 0.5 * ( XRANG - AMINI1 (XCOR1,XCOR2) ) *
* ( HEIGT - YCOOR )
ENDIF

AREA3 = AREA1l

IF ( AREA3.LE.
IF ( SLOPE.LT.

AREAT = AREAT
GO TO 40

CONTINUE

AREAl = 0.5 *

IF ( SLOPE.LT.

AREAT = AREAT

CONTINUE
IF ( AREAT.LE.

AREA2

0. ) WRITE(6,900)
0. ) AREA3 = -AREA3
+ AREA3

( 2.* HEIGT - YCOR1 - YCOR2 ) * ABS(XDIFr)
0. ) AREALl = -AREAl
+ AREAl

0. ) WRITE(6,900)
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USING COULOMB’'S LAW ON A MIN. DIP JOINT FACE, CHECK THE
POSSIBILITY OF SLIDING OF ROCK BLOCK

TOWGT = WEIGT * AREAT
DIPMN = ATAN (SLMIN)
DRIVE = TOWGT * SIN(DIPMN)

TOTCH 0.
TENCU 0.
DO S50 IITER = 1, NITER

INCLUDE THE POSSIBILITY OF THE PARALLEL DIP ANGLE

JTSPT = NCTMX(IITER,2} - 1
NOMAT = NMTRL (JTSPT)
IF ( DIPTH(IITER) .EQ.SLMIN ) THEN

COHJT = PROPT (NOMAT,5) * TLENG (IITER)
TOTCH = TOTCH + COHJT

ELSE
TENJT = PROPT (NOMAT,7) * TLENG (1ITER)
TENCU = TENCU + TENJT

ENDIF

CONTINUE

NOMAT = NMTRL (JOINT)

FRIJT = PROPT (NOMAT, 6)

RESIT = TOTCH + TOWGT * COS(DIPMN) * TAN(FRIJT) + TENCU

SAFEF = RESIT / DRIVE

STATISTICAL ANALYSIS FOR VOLUME ( NSTAT = 1 )
IF ( NSTAT.EQ.2 ) GO TO 200

ICTGY = ( AREAT -~ VARMN ) / DSTEP + 2

IF ( AREAT.LT.VARMN ) ICTGY = 1

IF ( ICTGY.GT.NSTEP ) ICTGY = NSTEP

SVALU (IOSIM, ICTGY) = SVALU(IOSIM, ICTGY) + 1.

IF ( NSTAT.NE.1.AND.ICASE.LE.NREG2.AND.IOSIM.LE.NREGl ) THEN
WRITE (10, 940) ICASE, IOSIM, AREAT, DIPMN, TOTCH, TENCU,
RESIT, DRIVE
ENDIF

CONTINUE
STATISTICAL ANALYSIS FOR MIN. DIP ANGLE ( NSTAT = 2 )

IF ( NSTAT.NE.2 ) GO TO 300

DIPDG = DIPMN / ANRAD

ICTGY = ( DIPDG -~ VARMN ) / DSTEP + 2

IFf ( DIPDG.LT.VARMN ) ICTGY = 1

IF ( ICTGY.GT.NSTEP ) ICTGY = NSTEP

SVALU (10SIM, ICTGY) = SVALU(IOSIM, ICTGY) + 1.
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CONTINUE
IF ( SAFEF.GT.SFMAX ) RETURN

STORE THE UNSTABLE JOINS PATH INTO TVALU

IF ( NSTAT.EQ.1l.AND.AREAT.LT.VARMN ) GO TO 400
IF ( NSTAT.EQ.2.AND.DIPDG.LT.VARMN ) GO TO 400
IF ( NSTAT.GT.O0.AND.ICTGY.LE.NSTEP ) THEN

TVALU (IOSIM, ICTGY) = TVALU(IOSIM, ICTGY) + 1.
ENDIF

CONTINUE
JFLAG = 1
NMODE = NMODE + 1
IF ( NMODE.EQ.l1l ) THEN
SFMIN = SAFEr
ELSE
IF ( SAFEF.LT.SFMIN ) SFMIN = SAFEF
ENDIF

STORE THE COORDINATES OF THE CRITICAL JOINT PATH FOR PLOTTING
IF ( SFMIN.EQ.SAFEF ) THEN

NITER = ABS (LITER)
DO 60 IITER = 1, NITER

CRITX(IITER) = CCTMX(IITER)

CRITY(IITER) = CCTMY (IITER)
CONTINUE

NCRIT = LITER

XPERT = -0.5

YCRIT = SLMIN * XPERT

ENDIF

FORMAT (//,5X, ' #** NEGATIVE AREA ***’ )
FORMAT (//,5X, ' #** ENCOUNTERED A KINEMATICALLY INADMISSIBLE PATH')
FORMAT (2X, 213, 2X, 6 (F10.3,1X))

RETURN
END




(1)

[2]

3]

4]

(5]

(6]

[7]

(8]

(91

[10]

(11]

(12]

-301-
References

G. Augusti, A. Baratta and F. Casciati.
Probabilistic Methods in Structural Engineering.
Chapman & Hall, 1984.

G.B. Baecher, N.A. Lanney and H.H. Einstein.
Statistical Description of Rock Properties and Sampling.
Proc. 18th U.S. Symp. Rock Mech. :5C1-5C8, 1977.

G.A. Bamard.
contribution to the Discussion of Prof. Bartlett’s Paper.
J. R. Statist. Soc., B. 25:294, 1963.

M.S. Bartlett.
Spectral Analysis of Two-dimensional Point Processes.
Biometrika 51:299-311, 1964.

C.C. Barton and E. Larson.

Fractal Geometry of Two-dimensional Fracture Networks at Yucca Mountain,
Southwest Nevada.

Fundamentals of Rock Joints : Proc. of Int. Symp. on Fundamentals of Rock Joints,
Ed. O. Stephannson :77-84, 1985.

J.E. Besag.
Contribution to the Discussion of Ripley’s Paper.
J. R. Statist. Soc. B. 39:193-195, 1977.

J.E. Besag and J.T. Gleaves.
On the Detection of Spatial Pattern in Plant Communities.
Bull. Int. Statist. Inst. 45:153-158, 1973.

J.E. Besag and P.J. Diggle.
Simple Monte Carlo Tests for Spatial Pattern.
Appl. Statist. 26:327-333, 1977.

D. Brown and P. Rothery.
Randomness and Local Regularity of Points in a Plane.
Biometrika 65:115-122, 1978.

K. Byth and B.D. Ripley.
On Sampling Spatial Pattemns by Distance Methods.
Biomerrics 36:279-284, 1980.

J.P. Chiles.
Fractal and Geostatistical Methods for Modeling of a Fractured Network.
Math. Geol. 20:631-654, 1988.

P.J. Clark and F.C. Evans.
Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations.
Ecology 35:445-453, 1954.

<




(13]

[14]

[15]

{16]

(17]

[18]

(19]

(20]

(21]

[22)

[23]

(24]

[25]

-302-

F. Conrad and C. Jacquin.

Representation of a Two-dimensional Fracture Network by a Probabilistic Model :
Application to Calculation of the Geometric Magnitudes of Matrix Blocks.

Technical Report UCRL-TRANS-10814, U.C. Lawrence Livermore Lab., 1975.

R. Cowan.
Homogeneous Line-Segment Processes.
Math. Proc. Camb. Phil. Soc. 86:481-489, 1979.

T.F. Cox and T. Lewis.
A Conditioned Distance Ratio Method for Analyzing Spatial Patterns.
Biometrika 63:483-491, 1976.

W.S. Dershowitz.
Rock Joint Systems.
PhD thesis, M.I.T., 1985.

W.S. Dershowitz.
Personal Communication.
1988.

W.S. Dershowitz and H.H. Einstein.
Characterizing Rock Joint Geometry with Joint System Models.
Rock Mech & Rock Eng. 21:21-51, 1988.

P.J. Diggle.
The Detection of Random Heterogeneity in Plant Populations.
Biomerrics 33:390-394, 1977.

P.J. Diggle.
Some Graphical Methods in the Analysis of Spatial Point Pattemns.
In V. Bamett (editor), Interpreting Multivariate Data, pages 55-73. 1981.

P.J. Diggle.
Statistical Analysis of Spatial Point Patterns.
Academic Press, 1983.

P.J. Diggle, J. Besag and J.T. Gleaves.
Statistical Analysis of Spatial Point Patterns by Means of Distance Methods.
Biomerrics 32:659-667, 1976.

L.L. Eberhardt.
Some Developments in Distance Sampling.
Biomertrics 23:207-216, 1967.

H.H. Einstein, et al.
Risk Analysis for Rock Slopes in Open Pit Mines.
Technical Report J 027 5015, U.S. Bureau of Mines, 1979.

H.H. Einstein and G.B. Baecher.
Probabilistic and Statistical Methods in Engineering Geology. Part I : Exploration.
Rock Mech & Rock Eng. 16:39-72, 1983.




(26]

(27}

[28]

[29]

[30]

[31]

(32)

(33]

(34]

[35]

[36]

(37

-303-

Einstein, H. H., et al.
The Effect of Discontinuity Persistence on Rock Slope Stability.
Int. J. Rock Mech. Min. Sci. :227-236, 1983.

V.A. Epanechnikov.
Non-parametric Estimation of a Multivariate Probability Density.
Theor. Prob. App. 14:153-158, 1969.

T. Fiksel.
Edge-corrected Density Estimators for Point Processes.
Statistics 19:67-75, 1988.

R.A. Fisher, H.G. Thomton and W.A. Mackenzie.

The Accuracy of the Plating Method of Estimating the Density of Bacterial
Populations, with Particular Reference to the Use of Thomton’s Agar Medium
with Soil Samples.

Ann. Appl. Bot. 9:325-359, 1922.

N.I Fisher, T. Lewis and B.J.J. Embleton.
Statistical Analysis of Spherical Data.
Cambridge University Press, 1987.

Glynn, E. F.
A Probabilistic Approach to the Stability of Rock Slopes,.
PhD thesis, M.I.T., 1979.

N.H. Gray, et al.
Topological Properties of Random Crack Networks.
Math. Geol. 8:617-626, 1976.

K.-H. Hanisch.
Reduction of n-th Moment Measures and the Special Case of the Third Moment

Measure of Stationary and Isotropic Planar Point Processes.
Math. Oper. u. Statist 14:421-435, 1983.

L. Heinrich.
On a Test of Randomness of Spatial Point Pattems.
Math. Oper. u. Statist. 15:413-420, 1984.

L. Heinrich.
Asymptotic Normality of a Random Point Field Characteristics.
Statistics 17:453-460, 1986.

W.G.S. Hines and R.J.O. Hines.

The Eberhardt Statistic and The Detectior: of Nonrandomness of Spatial Point
Distribution.

Biometrika 66:73-79, 1979.

Hoek, E. and J. W. Bray.
Rock Slope Engineering.
The Instn. Min. Metall., 3rd ed., 1981°.




(38]

[39]

(40]

[41]

[42)

[43]

[44]

(45]

[46]

[47]

[48]

(49]

(50]

-304-

P. Holgate.

Some New Tests of Randomness.
J. Ecology 53:261-266, 1965.

B. Hopkins.
A New Method for Determining the Type of Distribution of Plant Individuals.
Annals of Botany 18:213-227, 1954.

P.H.S.W. Kulatilake.
State-of-the-art in Stochastic Joint Geometry Modeling.
Proc. 29th U.S. Symp. Rock Mech. :215-229, 1988.

P.R. La Pointe.

A Method to Characterize Fracture Density and Connectivity Through Fractal
Geometry.

Int. J. Rock Mech. Min. Sci. 25:421-429, 1988.

P.A.W. Lewis and G.S. Shedler.
Simulation of Non-homogeneous Poisson Processes by Thinning.
Naval Res. Log. Quart. 26:403-413, 1979.

J.C.S. Long, et al.

Porous Media Equivalents for Networks of Discontinuous Fractures.
Water Res. Res. 18:645-658, 1982.

H.W. Lotwick and B.W. Silverman. .
Methods for Analysing Spatial Processes of Several Types of Points.
J. R. Statist. Soc., B. 44:406-413, 1982.

K.V. Mardia.
Statistics of Directional Data.
Academic Press, 1972.

B. Matem.
Spatial Variation.
Springer-Verlag., 1986, 2nd Ed.

R. Mead.

A test for Spatial Pattern at Several Scales using Data from a Grid of Contiguous
Quadrats.

Biometrics 30:295-307, 1974.

M.D. Mountford.
On E. C. Pielou’s Index of Non-Randomness.
J. Ecology 49:271-275, 1961.

J. Neyman and E.L. Scott.
Statistical Approach to Problems of Cosmology.
J. R. Statist. Soc. B 20:1-43, 1958.

J. Ohser and D. Stoyan.

On the Second-order and Orientation Analysis of Planar Stationaly Point Processes.
Biom. J. 23:523-533, 1981.




(51]

(52

(53]

[54]

(53]

[56]

(57

(58]

[59]

[60]

[61]

[62]

(63]

-305-

O’Reilly, K. J.
The Effect of Joint Plane Persistence on Slope Reliability.
Master’s thesis, M.I.T., 1980.

P. Parker and R. Cowan.
Some Properties of Line Segment Processes.
J. Appl. Prob. 13:96-107, 1976.

L. Paterson.
Serrated Fracture Growth with Branching.
Proc. 29th U.S. Symp. Rock Mech. :351-358, 1988.

E.C. Pielou.

The Use of Point-to-Plant Distances in the Study of the Pattemn of Plant Populations.

J. Ecology 47:607-613, 1959.

B.D. Ripley.
Modelling Spatial Patterns.
J. R. Statist. Soc. B. 39:172-212, 1977.

B.D. Ripley.
Analyses of Nest Spacings.

In B.J.T. Morgan and P.M. North (editor), Statistics in Ornithology, pages 151-158.
1985.

B.D. Ripley.

Point Processes for the Earth Sciences.

In C.F. Chung, et al. (editor), Quantitative Analysis of Mineral and Energy
Resources : NATO ASI , pages 301-322. 1988.

P.C. Robinson.
Connectivuty of Fracture Systems - A Percolation Theory Approach.
J. Phys. A 16:605-614, 1983.

P. Segall and D.D. Pollard.
Joint Formation in Granitic Rock of the Sierra Nevada.
Geol. Soc. Am. Bull. 94:563-575, 1983.

J. Serra.
The Boolean Model and Random Sets.
Com. Grap. & Image Proc. 12:99-126, 1980.

Shair, A. K.
The Effect of Two Sets of Joints on Rock Slope Reliability.
Master’s thesis, M.1.T., 1981.

M. Shinozuka and C.-M. Jan.
Digital Simulation of Random Processes and Its Applications.
J.Sound & Vib. 25:111-128, 1972.

B.W. Silverman.
Density Estimation for Statistics and Data Analysis.
Chapman & Hall, 1986.




[64]

[65]

[66]

[67]

[68]

[69]

(701

[71]

(72]

-306-

D. Stoyan.
Interrupted Point Processes.
Biom. J. 21:607-610, 1979.

D. Stoyan.

Statistical Analysis of Spatial Point Processes : A Soft-core Model and Cross-
corrrelations of Marks.
Biom. J. 29:971-980, 1987.

D. Stoyan and J. Ohser.

Cross-correlation Measures of Weighted Random Measures and Their Estimation.

Theo. Prob. Appl. 29:345-355, 1985.

D. Stoyan and H. Stoyan.
On one of Matern’s Hard-Core Point Process Models.
Math. Nachr. 122:205-214, 1985.

D. Stoyan, et al.

Stochastic Geometry and Its Application.
John Wiley & Sons, 1987.

G.J.G. Upton & B. Fingleton.
Spatial Data Analysis by Example.
John Wiley & Sons, 1985 Vol. 1.

D. Veneziano.
Probabilistic Model of Joints in Rock.
Internal Report, M.I.T., 1979.

K. Watanabe.

Stochastic Evaluation of the Two Dimensional Continuity of Fractures in a Rock
Mass.

Int. J. Rock Mech. Min. Sci. 23:431-437, 1986.

P.A. Witherspoon and J.C.S. Long.

Some Recent Developments in Understanding the Hydrology of Fractured Rocks.
Proc. 28th U.S. Rock Mech. :421-432, 1987.




